
High Performance Computing - Power
Application Programming Interface

Specification
Version 1.0

Chair: Ryan E. Grant1

Editor: Barry Rountree2

Secretary: Jeff Hanson3

Contributors:

Chris Cantalupo4, Jonathan Eastep4,
Scott Hara5, Siddhartha Jana4,

Jaymin Jasoliya4, Matthew Kappel6,

James H. Laros III1, Steve Leak 7,

Michael Levenhagen1, Steve Martin6,

Ramakumar Nagappan4, Kevin Pedretti1,

Todd Rosedahl8, Andy Warner3, Andrew Younge1

November 2019

Contributing Organizations:
1 Sandia National Laboratories
2 Lawrence Livermore National Laboratory
3 Hewlett Packard Enterprise (HPE)
4 Intel
5 Qualcomm
6 Cray
7 NERSC
8 IBM

1

Abstract

Measuring and controlling the power and energy consumption of high perfor-
mance computing systems by various components in the software stack is an
active research area [14, 3, 5, 11, 4, 22, 20, 17, 7, 18, 21, 19, 12, 1, 6, 15, 13].
Implementations in lower level software layers are beginning to emerge in
some production systems, which is very welcome. To be most effective, a
portable interface to measurement and control features would significantly
facilitate participation by all levels of the software stack. We present a pro-
posal for a standard power Application Programming Interface (API) that
endeavors to cover the entire software space, from generic hardware interfaces
to the input from the computer facility manager.

Chapter 1

Acknowledgment

The Power API Community Specification is managed via the Power API
Committee, an open specifications body operating under the Energy-Efficient
High Performance Working Group (EEHPC-WG). The community version
of the specification was developed based on the Power API Specification,
originally developed at Sandia National Laboartories and supported through
the Advanced Simulation and Computing (ASC) program funded by U.S.
Department of Energy’s National Nuclear Security Agency. The Sandia de-
veloped Power API released up to version 2.0, this document build upon that
work starting over at Community Version 1.0.

The Sandia National Laboratories version of the specification was retired
to support the community-lead version. The original specification can be
found at powerapi.sandia.gov.

The original publication describing the design and operation of the Power
API [8] is: Grant, R.E., Levenhagen, M., Olivier, S.L., DeBonis, D., Pedretti,
K.T. and Laros III, J.H., 2016. Standardizing power monitoring and control
at exascale. Computer, 49(10), pp.38-46.

We wish to thank our colleagues, Steve Hammond, Ryan Elmore, and
Kris Munch at the National Renewable Energy Laboratory (NREL) for their
contributions to the use case model which was the progenitor of this work.
This effort was greatly enhanced by interactions with staff throughout Sandia
as well as many external organizations.

The addition of the Python language bindings in version 2.0 of the Power
API specification would not have been possible without contributions from
Steve Martin (Cray), Matthew Kappel (Cray) and Leo Maurer (Cray), Paul
Falde (Cray) and valuable feedback from Johnathan Woodring (Los Alamos

1

National Laboratory)
Feedback and additions to the application hints interface were provided

by Chris Cantalupo and Steve Sylvester of Intel.
The following individuals contributed to the specification during the ver-

sion 1.X series: Sue Kelly (Sandia National Laboratories) and David DeBonis
(Sandia National Laboratories).

Prior to the first open release of this specification a select group of in-
dividuals agreed to review an early draft of the specification and provide
feedback. We would like to recognize the very significant contributions these
individuals made and thank them for their time and efforts. The following
individuals participated in an all day face-to-face review of the specification
and provided written feedback (listed in alphabetical order): David Jack-
son (Adaptive Computing), Steve Martin (Cray), Indrani Paul (AMD), Phil
Pokorny (Penguin Computing), Avi Purkayastha (National Renewable En-
ergy Laboratory), Muralidhar Rajappa (Intel), and Jeff Stuecheli (IBM). The
following individuals provided written feedback of the specification (listed
in alphabetical order): Dorian Arnold (University of New Mexico), Natalie
Bates (EEHPC), and Chung-Hsing Hsu (Oak Ridge National Laboratory).
We hope to continue these important collaborations and develop new ones
in an effort to represent and serve the HPC community as best we can.

2

Contents

1 Acknowledgment 1

2 Introduction 8
2.1 Background . 9
2.2 Motivation . 9
2.3 Use Case Development . 10
2.4 Security Model . 11

3 Theory of Operation 12
3.1 Overview . 12
3.2 Power API Initialization . 12
3.3 Roles . 13
3.4 System Description . 14
3.5 Attributes . 18
3.6 Metadata . 19
3.7 Thread Safety . 19

4 Type Definitions 20
4.1 Opaque Types . 20
4.2 Globally Relevant Definitions 20
4.3 Context Relevant Type Definitions 21
4.4 Object Relevant Type Definitions 22
4.5 Attribute Relevant Type Definitions 23
4.6 Metadata Relevant Type Definitions 25
4.7 Error Return Definitions . 26
4.8 Time Related Definitions . 27
4.9 Statistics Relevant Type Definitions 28
4.10 OS Hardware Interface Type Definitions 29

3

4.11 Application OS Interface Type Definitions 30

5 Core (Common) Interface Functions 33
5.1 Initialization . 33
5.2 Hierarchy Navigation Functions 35
5.3 Group Functions . 41
5.4 Attribute Functions . 49
5.5 Metadata Functions . 63
5.6 Statistics Functions . 69
5.7 Version Functions . 82
5.8 Big List of Attributes . 83
5.9 Big List of Metadata . 86

6 High-Level (Common) Functions 90
6.1 Report Functions . 90

7 Role/System Interfaces 93
7.1 Operating System, Hardware Interface 94

7.1.1 Supported Attributes 94
7.1.2 Supported Core (Common) Functions 97
7.1.3 Supported High-Level (Common) Functions 97
7.1.4 Interface Specific Functions 97

7.2 Monitor and Control, Hardware Interface 99
7.2.1 Supported Attributes 99
7.2.2 Supported Core (Common) Functions 101
7.2.3 Supported High-Level (Common) Functions 102
7.2.4 Interface Specific Functions 102

7.3 Application, Operating System Interface 103
7.3.1 Supported Attributes 103
7.3.2 Supported Core (Common) Functions 105
7.3.3 Supported High-Level (Common) Functions 105

7.4 User, Resource Manager Interface 114
7.4.1 Supported Attributes 114
7.4.2 Supported Core (Common) Functions 114
7.4.3 Supported High-Level (Common) Functions 114
7.4.4 Interface Specific Functions 114

7.5 Resource Manager, Operating System Interface 115
7.5.1 Supported Attributes 115

4

7.5.2 Supported Core (Common) Functions 117
7.5.3 Supported High-Level (Common) Functions 117
7.5.4 Interface Specific Functions 117

7.6 Resource Manager, Monitor and Control Interface 118
7.6.1 Supported Attributes 118
7.6.2 Supported Core (Common) Functions 120
7.6.3 Supported High-Level (Common) Functions 120
7.6.4 Interface Specific Functions 120

7.7 Administrator, Monitor and Control Interface 121
7.7.1 Supported Attributes 121
7.7.2 Supported Core (Common) Functions 123
7.7.3 Supported High-Level (Common) Functions 123
7.7.4 Interface Specific Functions 123

7.8 HPCS Manager, Resource Manager Interface 124
7.8.1 Supported Attributes 124
7.8.2 Supported Core (Common) Functions 124
7.8.3 Supported High-Level (Common) Functions 124
7.8.4 Interface Specific Functions 124

7.9 Accounting, Monitor and Control Interface 125
7.9.1 Supported Attributes 125
7.9.2 Supported Core (Common) Functions 127
7.9.3 Supported High-Level (Common) Functions 127
7.9.4 Interface Specific Functions 127

7.10 User, Monitor and Control Interface 128
7.10.1 Supported Attributes 128
7.10.2 Supported Core (Common) Functions 130
7.10.3 Supported High-Level (Common) Functions 130
7.10.4 Interface Specific Functions 130

8 Conclusion 131

References 133

Appendices 136

A Topics Under Consideration for Future Versions 137

B Change Log 141

5

C Alternative Programming Language Bindings: Python 142
C.1 Introduction . 142
C.2 Theory Of Operation . 143

C.2.1 Overview . 143
C.2.2 Power API Initialization 155
C.2.3 Roles . 155
C.2.4 System Description . 155
C.2.5 Attributes . 156
C.2.6 Metadata . 157
C.2.7 Thread Safety . 157

C.3 Type Definitions . 157
C.3.1 Opaque Types . 157
C.3.2 Globally Relevant Definitions 158
C.3.3 Context Relevant Type Definitions 158
C.3.4 Object Relevant Type Definitions 159
C.3.5 Attribute Relevant Type Definitions 160
C.3.6 Metadata Relevant Type Definitions 162
C.3.7 Error Return Definitions 163
C.3.8 Time Related Definitions 164
C.3.9 Statistics Relevant Type Definitions 166
C.3.10 OS Hardware Type Definitions 167
C.3.11 Application OS Interface Type Definitions 168

C.4 Core (Common) Interface Methods 169
C.4.1 Initialization . 170
C.4.2 Hierarchy Navigation Methods 171
C.4.3 Group Methods . 174
C.4.4 Attribute Methods . 179
C.4.5 Metadata Methods . 185
C.4.6 Statistics Methods . 187
C.4.7 Version Functions . 192
C.4.8 Big List of Attributes 193
C.4.9 Big List of Metadata 193

C.5 High Level (Common) Methods 193
C.5.1 Report Methods . 194

C.6 Interfaces . 194
C.6.1 Operating System, Hardware Interface 195
C.6.2 Monitor and Control, Hardware Interface 195
C.6.3 Application, Operating System Interface 195

6

C.6.4 User, Resource Manager Interface 199
C.6.5 Resource Manager, Operating System Interface 199
C.6.6 Resource Manager, Monitor and Control Interface . . . 199
C.6.7 Administrator, Monitor and Control Interface 199
C.6.8 HPCS Manager, Resource Manager Interface 199
C.6.9 Accounting, Monitor and Control Interface 199
C.6.10 User Monitor and Control Interface 199

C.7 Conclusion . 199

9 Index 200

7

Chapter 2

Introduction

Achieving practical exascale supercomputing will require massive increases
in energy efficiency. The bulk of this improvement will likely be derived
from hardware advances such as improved semiconductor device technologies
and tighter integration, hopefully resulting in more energy efficient computer
architectures. Still, software will have an important role to play. With
every generation of new hardware, more power measurement and control
capabilities are exposed. Many of these features require software involvement
to maximize feature benefits. This trend will allow algorithm designers to
add power and energy efficiency to their optimization criteria. Similarly, at
the system level, opportunities now exist for energy-aware scheduling to meet
external utility constraints such as time of day cost charging and power ramp
rate limitations. Finally, future architectures might not be able to operate all
components at full capability for a range of reasons including temperature
considerations or power delivery limitations. Software will need to make
appropriate choices about how to allocate the available power budget given
many, sometimes conflicting considerations.

For these reasons, we have developed a portable API for power measure-
ment and control. This Power API provides multiple levels of abstractions
to satisfy the requirements of multiple types of users [10]. The remainder of
this document describes the details of this Power API specification.

8

2.1 Background

We draw our inspiration from efforts such as the MPI forum’s1 process. We
seek to develop a de facto standard, led by a neutral national laboratory,
which is funded by a neutral federal agency. Community involvement is crit-
ical to the effort. The laboratory team has been garnering participation by
making presentations at workshops and operational group meetings. We de-
sire community participation from university and other researchers, as well
as HPC practitioners. Concurrent with the specification development, the
authors are creating a reference implementation comprising a subset of the
overall API functionality. This task is important to ensure that the specifi-
cation is usable. The ultimate goal, however, is that vendors of the hardware
and software components provide their own implementations. It is likely that
some portion of these functions have already been written by vendors, but
with slightly different calling arguments. For portability sake, we are hopeful
that the specific implementations can be melded to this proposed community
API.

2.2 Motivation

The introductory paragraph above, offers a few examples where a Power
API would be useful. This document’s abstract provides references to a small
subset of the current research activities that would benefit from a community-
adopted power API. Additional, more fleshed out examples are described
in the appendices of the Power/Energy Use Cases for High Performance
Computing document [10]. To provide the proper mindset for reading this
document, we offer the following list as well.

• A job is entering a checkpoint phase. The application requests a re-
duced processor frequency during the long I/O period.

• A developer is trying to understand frequency sensitivity of an algo-
rithm and starts a tool that analyzes performance and power consump-
tion while the job is running.

• Once an application’s power signature is analyzed, future job submis-
sions give power hints to the resource manager.

1http://www.mpi-forum.org

9

• A data center has a maximum of capacity of nn MW. One HPC system
is down for extended maintenance. Other systems can have a higher
maximum power cap.

• For electric bills based on peak usage periods, determine a maximum
HPC load that minimizes loss of HPC use. Then direct the scheduler
to enforce that peak usage.

2.3 Use Case Development

The Power/Energy Use Cases for High Performance Computing document [10]
identifies the requirements for the Power API. Rather than a list, the require-
ments are specified as formal use cases employing the ISO/IEC 19501:2005
Unified Modeling Language (UML) standard, which is described in the ref-
erence manual by Booch, et al. [2]. While the term use case has come to
be almost synonymous with scenario, the standard defines a use case model.
The use case model does include scenario-like requirement specifications, but
it also clearly identifies the roles and scope of the requirements. For this
document, the key concepts from the use case model are actor and system.
Each identified actor plays a distinct role in using the power API. Actors
can be persons, other systems, or something else (e.g. cron, asynchronous
event, etc.). For the Power API use case model, an HPC computer is bro-
ken down into logical systems. By breaking down the requirements into this
use case model, we can clearly see the demarcation points requiring an API
between external actors and each system. And by subsequently viewing sys-
tems as actors to the other systems, we obtain the complete set of necessary
interfaces.

The specific actor/system pairs used for the power API are shown in
Figure 2.1. The external actors are shown on the left portion of the dia-
gram. Systems are shown as rectangles. The four systems conjoined with
the actor symbol also serve as actors for some use cases. The ten sections
within Chapter 7 provide function specifications for the ten actor/system
pairs (Role/System pairs in the specification). The two missing interfaces
are Facility Manager to Facility Hardware and Facility Manager to HPCS
manager. These were included in the use case model to identify the bound-
aries of the specification and recognize important points of information input.

10

Actor System

Facility
Manager

Facility
Hardware

HPCS
Manager

HPCS
Manager

HPCS
Resource
Manager

HPCS
Resource
Manager

HPCS
Monitor &
Control

HPCS
Monitor &
Control

HPCS
Operating
System

HPCS
Operating
System

HPCS
Hardware

HPCS User

HPCS Admin

HPCS
Accounting

HPCS
Application

Figure 2.1: Top Level Conceptual Diagram representing the culmination of
all Use Case Diagrams covered.

2.4 Security Model

The specification assumes traditional hardware (e.g. protection rings) and
operating system support for access control. Implementations should only
need traditional restrictions based on authenticated individual identity and/or
the groups to which the individual belongs. A super user is likely needed as
well. Depending on the implementation, the context structure (Section 4.3)
may be sufficiently protected to allow for secure storage of access informa-
tion. Future releases of the specification will address security and policy
considerations in more detail.

11

Chapter 3

Theory of Operation

3.1 Overview

This section discusses many of the foundational concepts leveraged through-
out the Power API specification. It should be noted that many terms com-
monly used when discussing object oriented languages are used in this section
and the document as a whole. The use of these terms in no way implies that
the Power API specification must be implemented using an object oriented
language. We have attempted to achieve two goals, listed in order of priority:
1) programmer portability, where the programmer is the user of the API, and
2) the latitude of the implementor who will often become the user of the API
benefitting from our first priority.

3.2 Power API Initialization

Using any of the Power API interfaces requires initialization. Initializaton
returns a context. In the specification, the context is defined as an opaque
pointer. This approach was taken to allow the maximum amount of flexibility
to the implementor. The context returned will contain (act as the entry point
to) the system description that is exposed to the user, all policy and privilege
information, basically everything the user of the API requires to perform the
functionality specified by the API. The system description is not required to
be changed or updated during the life of a specific context. Initialization is
accomplished by calling PWR_CntxtInit() p. 34. Resources created, like groups,
by the user during the life of the context should be cleaned up (destroyed)

12

by the user when no longer needed. The implementation is required to clean
up all context resources when the user calls PWR_CntxtDestroy() p. 35.

3.3 Roles

The Power API specification leverages the concept of Roles. Roles represent
the different types of users that exist which include:

• Application The application or application library executing on the
compute resource. May also include run-time components running in
user space.

• Monitor and Control Cluster management or Reliability Availability
and Serviceability (RAS) systems, for example.

• Operating System Linux or specialized Light Weight Kernels which
are found on HPC platforms and potentially portions of run-time sys-
tems.

• User The user of the HPC platform.
• Resource Manager This can include work load managers, schedulers,

allocators and even portions of run-time systems.
• Administrator The system administrator or HPC platform manager.
• HPCS Manager The individual or individuals responsible for man-

aging policy for the HPC platform, for example.
• Accounting Individual or software that produces reports of metrics

for the HPC platform.
These brief definitions are not meant to be exhaustive. Roles are analogous
with the Actors discussed in section 2.3. In some cases roles become the
system that other roles interact with. For example, we specify an interface
between the Application role (HPCS Application in figure 2.1) and the Oper-
ating System (HPCS Operating System in figure 2.1). The Operating System
is the system (in UML terminology) that the Application role is interacting
with. Notice in figure 2.1 that the specification also includes an interface
between the Operating System role and the Hardware (HPCS Hardware in
figure 2.1). These and other interfaces are described in chapter 7. The user
of the API is required to specify what role they will assume when interacting
with the system upon initialization of the API.

Roles are also provided as a mechanism for the implementation to ex-
press priority or precedence in circumstances where, for example, conflicting
operations are requested.

13

3.4 System Description

The system description is the view of the system exposed to the user upon
initialization via the context that is returned. Figure 3.1 depicts an example
of a system description showing a hierarchical arrangement of objects. All ob-
ject types listed in the specification must be defined by any implementation,
but do not have to be used in the system description. The implementation
chooses which objects will be employed in the system description and how
they will be arranged. An object can only have a single parent but may have
multiple children. Currently, a system description may only describe a single
platform and have a single object of type Platform which represents the top
of the hierarchy. Later revisions of the specification may include the ability to
combine multiple platforms in the system description. This might be useful,
for example, in representing an entire datacenter. While figure 3.1 depicts
a homogeneous system description, homogeneity is not a requirement. In
practice a system description can be heterogeneous and unbalanced.

To summarize the requirements:
• The Platform object type must be defined by the implementation and

must appear at the top of the system description.
• All object types in this specification must be defined in any implemen-

tation. The use of the object types, with the exception of the Platform
object type, is optional.

• Objects can only have one parent but may have many children. Cur-
rently the Platform object has no parent since it appears at the top
of the system description. This will likely change in future versions of
the specification.

• If an implementation chooses to add objects not defined in the spec-
ification they should only be exposed to the user in a vendor specific
context to avoid unpredictable or non-portable behaviour (see PWR_

CntxtInit() p. 34).
The following is a list of the object types currently included in the spec-

ification along with a short description of each.
• Platform - Currently, the one and only Platform object is the top level

object of the system description exposed to the user of the API. The
Platform object is intended to conceptually represent the entire Plat-
form. For example, if the Platform object has a power or energy mea-
surement or control capability exposed through the Platform objects
attributes the scope of these attributes should be platform wide.

14

Platform

Cabinet

Node

Socket

Core

Power Plane

Chassis

Board Board

Node Node Node

Core

Power Plane

Socket

Core

Power

Plane

Core

Power

Plane

Socket

Core

Power

Plane

Core

Power

Plane

Socket

Core

Power

Plane

Core

Power

Plane

Core Core

Core Core

Core Core Core Core

Figure 3.1: Hierarchical Depiction of System Objects

15

• Cabinet - Objects of type Cabinet are intended to represent the cabi-
nets or racks that act as enclosures (or logical groupings) for the plat-
form equipment. Beyond the utility of convenient groups of lower level
objects (equipment) cabinets may have power or energy relevant capa-
bilities which can be exposed through attributes associated with each
Cabinet object.

• Chassis - Objects of type Chassis are intended to be used for finer
grained organization of objects within the higher level Cabinet object.
Chassis, like cabinets may have power or energy relevant capabilities
that can be exposed to the user.

• Board - Board objects offer another method of organization for un-
derlying objects (equipment). Boards may also have power and or
energy relevant capabilities which can be exposed through associated
attributes. For example, a board could contain the power supply and
the point of instrumentation for collecting power or energy samples for
a node or multiple nodes.

• Node - The Node type is probably one of the most universally im-
portant object types. Measuring and controlling the power and or
energy characteristics of a node or multiple nodes (grouped into multi-
ple Boards, Chassis or Cabinets) is important for a many reasons and
provides a wide range of flexibility of configuration to the implementor.
For example, on HPC platforms a single application typically executes
on many nodes. Understanding the energy use of an application run
can be obtained by collecting the energy use (via the appropriate Node
attribute) for each node participating in that application execution.
Node objects will likely have many attributes exposing many power
and energy relevant capabilities.

• Socket - The Socket object is intended to represent the one or more
processor sockets, or other component types that can be thought of as
sockets, that make up a Node. For example, a single Node object may
be a dual socket (dual CPU) node. The implementor may choose to
enclose other component types (a NIC for example) within a Socket
object, or add other object types as they see fit to represent the archi-
tecture they are describing. They can also decide to omit the use of
this, or any other object type (currently other than Platform) in the
system description.

• Power Plane - The Power Plane object is used to organize lower level
objects (any types of objects) within a power domain or single point of

16

measurement and or control. For example, a pair of cores may share a
power plane within a socket. This configuration is depicted in figure 3.1.
This organization allows a pair of cores to be controlled from a single
power control point in the hierarchy for convenience. This object type
allows these power and energy relevant relationships to be expressed
anywhere in the system description.

• Core - Core objects are intended to represent the individual processor
cores within multi-core CPUs (or possibly GPUs). Modern architec-
tures have an increasing number of cores per CPU (or GPU). In the
near future it is likely that an abstraction between Socket and core
would become useful as the number of cores increase. Physical and
logical groupings of cores already exist in current architectures.

• Memory - The Memory object type is included to represent the growing
range of memory types that exist on HPC platforms. Individual cores,
for example, have Memory in the form of cache which the implementor
may choose to organize differently from the main memory of the Node
or a tertiary level of memory such as NVRAM.

• NIC - The NIC object is intended to represent the Network Interface
Controller. As with many other object types, the organization of a NIC
in relation to Boards, Nodes or even Cores is architecture dependent.
The NIC object type is included in hopes that there are power and
energy relevant capabilities included in future NICs.

• HT - The HT (Hardware Thread) object represents an OS-visible CPU.
While from a physical perspective frequency and voltage changes oc-
cur at the physical core level, it is usually the case that these must
be configured by software at the OS-visible CPU level. Typically the
lowest-common denominator among all OS-visible CPUs is used to con-
figure the physical core.

Additional object types may be defined by the implementor and placed
anywhere in the hierarchy as long as the previously stated rules are not
violated. Ultimately, the object types defined in this specification, and those
added by the implementor, will be used to produce a system description
describing the system presented to the user via the context returned upon
initialization. Objects are used as interfaces to underlying functionality. The
specification does not assume state is retained for objects. Additionally, the
specification makes no guarantees with regards to race conditions between
processes or threads.

17

3.5 Attributes

Attributes are an important part of the Power API. A large amount of basic
functionality is exposed through the use of attributes. The term attribute is
used somewhat conceptually since some attributes are implicit while others
are explicitly defined as part of a required specification data structure (page
24). Attributes are used for a number of reasons such as to navigate through
the system description, to access information or a measurement (sensor infor-
mation for example) and for control (setting a P-state for example). Global
attributes are attributes that are present for every object defined; whether
required by the specification or added by the implementor.

The following is the list of global attributes:
• name - Unique identifying name of the object (see PWR_ObjGetName() p. 37).
• entry point - The position in the hierarchy after initialization (see PWR_
CntxtGetEntryPoint() p. 36).

• type - The type of the object (see PWR_ObjGetType() p. 36).
• parent - The parent of an object is the object that is above it in the hier-

archy (see PWR_ObjGetParent() p. 38). The only exception is the currently
single platform object whose parent is a pointer to NULL.

• children - Object or objects directly below an object in the hierarchy
(see PWR_ObjGetChildren() p. 39).

Note, in the list above all the attributes are implicit. Explicit attributes
are defined in the PWR_AttrName p. 24type definition. The majority of the at-
tributes defined in the specification, and likely those added by an imple-
mentator, are, and will be, explicit. The implicit attributes defined above
are primarily used for navigation and are accessed through attribute specific
functions which are described in Section 5.2.

Explicit attributes are either accessed through the generic attribute in-
terface (Section 5.4) or attribute specific functions found in either the section
describing the specific interface in which they are used or in Chapter 5, Core
(Common) Interface Functions.

The attribute interface is intended to keep the specification from growing
every time additional functionality is either specified or added by an imple-
mentor. As long as the new functionality fits within the defined attribute
interfaces no additional API functions are required to be specified.

18

3.6 Metadata

Each object and object attribute pair can have additional descriptive meta-
data associated with it. This information is often useful for getting a better
understanding of the meaning of objects and attributes and how to interpret
the values read from attributes. Examples include a human readable name
and description strings, the list of values supported by an attribute, and mea-
surement accuracy and precision. The metadata interface (see section 5.5)
returns information relevant to either a specific object or a specific attribute
of a specific object. A given attribute name may have different metadata for
different objects, even if the objects are of the same type (e.g., the voltage
attribute of two node objects may have different metadata accuracy values).

3.7 Thread Safety

Implementations of the Power API are not required to provide thread safety
to multiple threads of the same process. If necessary, users of the Power
API must use locking or some other mechanism to ensure that only one
thread per process calls into the Power API at a time. This requirement
only applies to threads of the same process that may issue conflicting oper-
ations. Different processes may make simultaneous Power API calls without
any coordination. If thread concurrency within a process is required, the
PWR_CntxtInit() p. 34function can be called multiple times to initialize multi-
ple Power API contexts. Multiple threads of the same process may then
simultaneously call into the Power API, so long as each thread operates on a
different Power API context. For example, a process with four threads may
create four Power API contexts and associate one context with each thread.
The threads may then make Power API calls without any additional coor-
dination, so long as each thread operates only on its assigned context and
the objects exposed by its assigned context. Threads should not operate on
objects exposed by another thread’s context without employing locking or
some other coordination mechanism.

19

Chapter 4

Type Definitions

4.1 Opaque Types

The following type definitions are specified to be opaque pointers from the
point of view of Power API users. Power API implementations will typically
map these pointers to internal implementation-specific state. The reason for
using opaque pointers is to hide non-portable implementation details from
users and give implementors of the API maximum flexibility.

typedef void* PWR_Cntxt

typedef void* PWR_Grp

typedef void* PWR_Obj

typedef void* PWR_Status

typedef void* PWR_Stat

4.2 Globally Relevant Definitions

The following definitions are specified on a global basis. The PWR_MAJOR_

VERSIONand PWR_MINORVERSION definitions are compile time constants that
indicate the Power API version supported by the implementation. The PWR_

MAXSTRINGLEN definition is a compile time constant that defines the maxi-
mum length of strings that can be returned from Power API calls, with the
actual value being a vendor specific length.

#define PWR_MAJOR_VERSION 2

#define PWR_MINOR_VERSION 0

#define PWR_MAX_STRING_LEN vendor-defined

20

4.3 Context Relevant Type Definitions

The PWR_CntxtType p. 22and PWR_Role types are required to be defined by all im-
plementations of the Power API. When a new Power API context is created,
one value from each of these types is used to determine the kind of context
created (see section 5.1). For PWR_CntxtType, the only required value that
an implementation must define is PWR_CNTXT_DEFAULT. This indicates that
the new context will only contain Power API functionality that is explic-
itly defined in the specification, with no implementation-specific extentions
present. Implementors may extend PWR_CntxtType with additional values,
such as PWR_CNTXT_VENDOR, to provide contexts with additional functionality.

We anticipate that most implementations of the Power API will define
additional PWR_CntxtType values that provide additional functionality, such
as vendor, platform, or model specific extentions. If an implementation ex-
tends the specification, the extensions should only be visible to the user when
they use a context that was created with an implementation-specific PWR_

CntxtType value. If the implementation-specific extensions are not available
to the user, initialization using an implementation-specific PWR_CntxtType

value should result in failure. The user must always be able to initialize
a context using PWR_CNTXT_DEFAULT p. 22to to get a context containing only the
standard specification features.

Differentiation between context types is the mechanism used by the Power
API to enable extended vendor, platform or model specific capabilities while,
at the same time, allowing portability for applications or tools that only
leverage standard specification features. For example, a tool that leverages
only the object and attribute types defined in the standard specification
can initialize a Power API context using PWR_CNTXT_DEFAULTand not have
to worry about dealing with any implementation-specific functionality. The
context it receives will only provide functionality that is explicitly defined by
the Power API specification.

PWR_Role p. 22is used to specify the role that the user is acting in when they
initialize a new context. Additional roles may not be added by the imple-
mentor. Notice that there is a role defined for every actor in Chapter 7 -
Role/Systems Interfaces. We intend that the user’s role will serve many pur-
poses, such as determining the view of the system that is provided within
the context when combined with the system the user is acting on. Roles can
also be used to help determine the privilege of the user’s context for purposes
such as resolving the precedence of conflicting operations.

21

PWR CntxtType

typedef int PWR_CntxtType

#define PWR_CNTXT_DEFAULT 0
#define PWR_CNTXT_VENDOR 0

PWR Role

typedef enum {

PWR_ROLE_APP = 0, /* Application */

PWR_ROLE_MC, /* Monitor and Control */

PWR_ROLE_OS, /* Operating System */

PWR_ROLE_USER, /* User */

PWR_ROLE_RM, /* Resource Manager */

PWR_ROLE_ADMIN, /* Administrator */

PWR_ROLE_MGR, /* HPCS Manager */

PWR_ROLE_ACC, /* Accounting */

PWR_NUM_ROLES,

/* */

PWR_ROLE_INVALID = -1,

PWR_ROLE_NOT_SPECIFIED = -2

} PWR_Role;

4.4 Object Relevant Type Definitions

The PWR_ObjType p. 23type is required to be defined by all implementations of
the Power API specification. Objects with types defined by PWR_ObjType

are used by the implementor to create the system description (see section
3.4) that is exposed to the user upon initialization. An implementation may
extend this type by adding new object enumeration type, which must be
added prior to PWR_NUM_OBJ_TYPES. The added implementation-specific ob-
ject types will only be used by implementation-specific contexts (see section
4.3). Contexts that were initialized using the default context, PWR_CNTXT_
DEFAULT, will only expose objects types defined in the list below.

22

PWR ObjType

typedef enum {

PWR_OBJ_PLATFORM = 0,

PWR_OBJ_CABINET,

PWR_OBJ_CHASSIS,

PWR_OBJ_BOARD,

PWR_OBJ_NODE,

PWR_OBJ_SOCKET,

PWR_OBJ_CORE,

PWR_OBJ_POWER_PLANE,

PWR_OBJ_MEM,

PWR_OBJ_NIC,

PWR_OBJ_HT,

PWR_NUM_OBJ_TYPES,

/* */

PWR_OBJ_INVALID = -1,

PWR_OBJ_NOT_SPECIFIED = -2

} PWR_ObjType;

4.5 Attribute Relevant Type Definitions

The PWR_AttrName p. 24and PWR_AttrDataType types are required to be imple-
mented. Both may be extended by the implementor and exposed using an
implementation specified context type (see section 4.3). If new PWR_AttrName

entries are added it is required that the attribute name is specified and com-
mented as shown in the PWR_AttrName structure. Likewise, new types must
be added to the PWR_AttrDataType structure. It’s important to note that the
attribute interface currently supports only numeric types. Attributes should
only be added to this definition if they can be meaningfully supported by the
attribute interface (section 5.4). Additional attributes must be added prior
to PWR_NUM_ATTR_NAMES. The Attributes in PWR_AttrName expose what we
consider foundational measurement and control interfaces. Additional capa-
bilities are and can be added using additional operations and often interface
specific functions.

The PWR_AttrAccessError p. 25type is used to hold the error returns that
are popped from the PWR_Status handle (see section 4.1) using the PWR_

StatusPopError() p. 52function.

23

PWR AttrName

typedef enum {

PWR_ATTR_PSTATE = 0, /* uint64_t */

PWR_ATTR_CSTATE, /* uint64_t */

PWR_ATTR_CSTATE_LIMIT, /* uint64_t */

PWR_ATTR_SSTATE, /* uint64_t */

PWR_ATTR_CURRENT, /* double, amps */

PWR_ATTR_VOLTAGE, /* double, volts */

PWR_ATTR_POWER, /* double, watts */

PWR_ATTR_POWER_LIMIT_MIN, /* double, watts */

PWR_ATTR_POWER_LIMIT_MAX, /* double, watts */

PWR_ATTR_FREQ, /* double, Hz */

PWR_ATTR_FREQ_LIMIT_MIN, /* double, Hz */

PWR_ATTR_FREQ_LIMIT_MAX, /* double, Hz */

PWR_ATTR_ENERGY, /* double, joules */

PWR_ATTR_TEMP, /* double, degrees Celsius */

PWR_ATTR_OS_ID, /* uint64_t */

PWR_ATTR_THROTTLED_TIME, /* uint64_t */

PWR_ATTR_THROTTLED_COUNT, /* uint64_t */

PWR_ATTR_GOV, /* uint64_t */

PWR_NUM_ATTR_NAMES,

/* */

PWR_ATTR_INVALID = -1,

PWR_ATTR_NOT_SPECIFIED = -2

} PWR_AttrName;

PWR AttrDataType

typedef enum {

PWR_ATTR_DATA_DOUBLE = 0,

PWR_ATTR_DATA_UINT64,

PWR_NUM_ATTR_DATA_TYPES,

/* */

PWR_ATTR_DATA_INVALID = -1,

PWR_ATTR_DATA_NOT_SPECIFIED = -2

} PWR_AttrDataType;

24

PWR AttrAccessError

typedef struct {

PWR_Obj obj; /* The object associated with the error */

PWR_AttrName attr; /* The attribute associated with the error

*/

int index; /* The index in the output array where the error

occurred */

int error; /* The error code, see Error Return Definitions

section */

} PWR_AttrAccessError;

PWR AttrGov

typedef enum {

PWR_GOV_LINUX_ONDEMAND,

PWR_GOV_LINUX_PERFORMANCE,

PWR_GOV_LINUX_CONSERVATIVE,

PWR_GOV_LINUX_POWERSAVE,

PWR_GOV_LINUX_USERSPACE

} PWR_AttrGov;

4.6 Metadata Relevant Type Definitions

The PWR_MetaName type is required to be implemented. The type may be
extended by the implementor and the additional capabilities may be exposed
using an implementation specified context type (see section 4.3). If new PWR_

MetaName items are added, it is required that the metadata name be specified
and commented as shown in the PWR_MetaName definition. Additional meta-
data items must be added prior to PWR_NUM_META_NAMES.

25

PWR MetaName

typedef enum {

PWR_MD_NUM = 0, /* uint64_t */

PWR_MD_MIN, /* either uint64_t or double, depending on

attribute type */

PWR_MD_MAX, /* either uint64_t or double, depending on

attribute type */

PWR_MD_PRECISION, /* uint64_t */

PWR_MD_ACCURACY, /* double */

PWR_MD_UPDATE_RATE, /* double */

PWR_MD_SAMPLE_RATE, /* double */

PWR_MD_TIME_WINDOW, /* PWR_Time */

PWR_MD_TS_LATENCY, /* PWR_Time */

PWR_MD_TS_ACCURACY, /* PWR_Time */

PWR_MD_MAX_LEN, /* uint64_t, max strlen of any returned

metadata string. */

PWR_MD_NAME_LEN, /* uint64_t, max strlen of PWR_MD_NAME */

PWR_MD_NAME, /* char *, C-style NULL-terminated ASCII string */

PWR_MD_DESC_LEN, /* uint64_t, max strlen of PWR_MD_DESC */

PWR_MD_DESC, /* char *, C-style NULL-terminated ASCII string */

PWR_MD_VALUE_LEN, /* uint64_t, max strlen returned by

PWR_MetaValueAtIndex */

PWR_MD_VENDOR_INFO_LEN, /* uint64_t, max strlen of

PWR_MD_VENDOR_INFO */

PWR_MD_VENDOR_INFO, /* char *, C-style NULL-terminated ASCII

string */

PWR_MD_MEASURE_METHOD, /* uint64_t, 0/1 depending on real/model

mesurement */

PWR_NUM_META_NAMES,

/* */

PWR_MD_INVALID = -1,

PWR_MD_NOT_SPECIFIED = -2

} PWR_MetaName;

4.7 Error Return Definitions

The following required definitions are the available status returns for the
functions described in this specification. It is anticipated that this list will
grow. The implementor is also free to add status returns to express conditions
not currently covered in the specification and expose them using an imple-
mentation specified context type (see section 4.3). The range -127 through
128 are reserved for use by the Power API specification. Positive numbers

26

greater than zero are to be used for warnings.

#define PWR_RET_WARN_TRUNC 5

#define PWR_RET_WARN_NO_GRP_BY_NAME 4

#define PWR_RET_WARN_NO_OBJ_BY_NAME 3

#define PWR_RET_WARN_NO_CHILDREN 2

#define PWR_RET_WARN_NO_PARENT 1

#define PWR_RET_SUCCESS 0

#define PWR_RET_FAILURE -1

#define PWR_RET_NOT_IMPLEMENTED -2

#define PWR_RET_EMPTY -3

#define PWR_RET_INVALID -4

#define PWR_RET_LENGTH -5

#define PWR_RET_NO_ATTRIB -6

#define PWR_RET_NO_META -7

#define PWR_RET_READ_ONLY -8

#define PWR_RET_BAD_VALUE -9

#define PWR_RET_BAD_INDEX -10

#define PWR_RET_OP_NOT_ATTEMPTED -11

#define PWR_RET_NO_PERM -12

#define PWR_RET_OUT_OF_RANGE -13

#define PWR_RET_NO_OBJ_AT_INDEX -14

4.8 Time Related Definitions

PWR_Time is defined as a 64-bit value used to hold timestamps in nanosec-
onds for a wide range of functionality. For those timestamps that are to be
used in relation to an epoch, midnight January 1st, 1970 will be considered
the beginning of the epoch. This will provide for hundreds of years to be
expressed from the epoch point, which is sufficient for the purposes of the
Power API. PWR_Time is also used for other structures designed to record
time values (PWR_TimePeriod, page 28 for example). PWR_TIME_UNINIT is
used as an indicator that the time value has not been initialized. This is
intended to allow the implementation to make decisions on how a function
is being used based on whether a time value has been specified or not (for
example, the Statistics functions in section 5.6). PWR_TIME_UNKNOWN is an
output, which indicates that the time of an event was not recorded. For
example, a maximum value for an attribute could be known for a given time
period, but the instant at which the maximum occurred is unknown. The
PWR_TimePeriod type allows for three timestamps, start, stop and instant.

27

Instant is available to indicate when a statistically significant event occurred
within the window delineated by start and stop. For example, if the user re-
quests the PWR_ATTR_STAT_MAX statistic for PWR_ATTR_POWER, the start and
stop times will indicate the window of time over which the maximum value
was calculated. The instant would indicate the instant in time the maximum
value occurred. Defining PWR_Time, PWR_TIME_UNINIT, PWR_TIME_UNKNOWN,
and PWR_TimePeriod as specified is required.

typedef uint64_t PWR_Time;

#define PWR_TIME_UNINIT 0

#define PWR_TIME_UNKNOWN 0

PWR TimePeriod

typedef struct {

PWR_Time start;

PWR_Time stop;

PWR_Time instant;

} PWR_TimePeriod;

4.9 Statistics Relevant Type Definitions

The PWR_AttrStat type includes the list of currently defined statistics po-
tentially available to the user of an implementation. Potentially, because
this feature requires either direct device or software support. Statistics are
generated on a per-attribute basis (see PWR_AttrName on page 24). The
statistics type definitions are required to be implemented and are used with
the statistics functions (see section 5.6).

28

PWR AttrStat

typedef enum {

PWR_ATTR_STAT_MIN = 0,

PWR_ATTR_STAT_MAX,

PWR_ATTR_STAT_AVG,

PWR_ATTR_STAT_STDEV,

PWR_ATTR_STAT_CV,

PWR_ATTR_STAT_SUM,

PWR_NUM_ATTR_STATS,

/* */

PWR_ATTR_STAT_INVALID = -1,

PWR_ATTR_STAT_NOT_SPECIFIED = -2

} PWR_AttrStat;

PWR ID

typedef enum {

PWR_ID_USER = 0,

PWR_ID_JOB,

PWR_ID_RUN,

PWR_NUM_IDS,

/* */

PWR_ID_INVALID = -1,

PWR_ID_NOT_SPECIFIED = -2

} PWR_ID;

4.10 OS Hardware Interface Type Definitions

The following definitions are used in the Operating system to Hardware in-
terface described in section 7.1. Each definition will be described below along
with its specification. All of the definitions in this section are required, even
if the corresponding OS/HW functions are not implemented.

PWR OperState

The PWR_OperState type is used to describe the state being requested by
OS to Hardware interface functions that require power/performance state
information such as P-State and C-State information. Both c_state_num

and p_state_num must be provided.

29

typedef struct {

uint64_t c_state_num;

uint64_t p_state_num;

} PWR_OperState;

4.11 Application OS Interface Type Defini-

tions

The following definitions are primarily used in the Application to Operating
system interface described in section 7.3. Each definition will be described
below along with its specification. All of the definitions in this section are
required, even if the corresponding App/OS functions are not implemented.

PWR RegionHint

The PWR_RegionHint type is an abstraction intended to allow the applica-
tion to communicate power and performance significant information to the
operating system. It is used in conjunction with PWR_RegionIntensity to
describe the type and extent of the behavior described for a given execution
region. This information can then be used to tune components, with the in-
tent being a more power/performance efficient use of the components results.
For example, if an application is going into a serial region, the performance
of the application may benefit from the core running the serial portion of
the code at a higher frequency, thereby completing that serial portion faster.
Since the application is in a serial portion, the implementation may deter-
mine that the remaining cores may be put into a more power efficient state
(a sleep state for example), thus possibly resulting in both a performance
increase and a decrease in the amount of power/energy the application uses.
Regions may be specified as PWR_REGION_DEFAULT to indicate that the ap-
plication is no longer providing a hint as to the region characteristics of
currently executing code.

30

typedef enum {

PWR_REGION_DEFAULT = 0,

PWR_REGION_SERIAL,

PWR_REGION_PARALLEL,

PWR_REGION_COMPUTE,

PWR_REGION_COMMUNICATE,

PWR_REGION_IO,

PWR_REGION_MEM_BOUND,

PWR_REGION_GLOBAL_LOOP,

PWR_NUM_REGION_HINTS,

/* */

PWR_REGION_INVALID = -1,

PWR_REGION_NOT_SPECIFIED = -2

} PWR_RegionHint;

PWR RegionIntensity

The PWR_RegionIntensity type is an abstraction of a given level of intensity
for a PWR_RegionHint. It provides five levels of intensity as well as PWR_

Region_INT_NONE, which can be used in the case where the intensity is not
known, is not applicable, or in cases where the operating system or runtime
may be better equipped to determine the intensity of a given code region.

typedef enum {

PWR_REGION_INT_HIGHEST = 0,

PWR_REGION_INT_HIGH,

PWR_REGION_INT_MEDIUM,

PWR_REGION_INT_LOW,

PWR_REGION_INT_LOWEST,

PWR_REGION_INT_NONE,

PWR_NUM_REGION_INTENSITIES,

/* */

PWR_REGION_INT_INVALID = -1,

PWR_REGION_INT_NOT_SPECIFIED = -2

} PWR_RegionIntensity;

PWR SleepState

The PWR_SleepState type is a high level abstraction of the different sleep
state levels that may be provided on a given system. The sleep levels are

31

translated into the appropriate hardware level constructs by lower layers of
the PowerAPI.

typedef enum {

PWR_SLEEP_NO = 0,

PWR_SLEEP_SHALLOW,

PWR_SLEEP_MEDIUM,

PWR_SLEEP_DEEP,

PWR_SLEEP_DEEPEST,

PWR_NUM_SLEEP_STATES,

/* */

PWR_SLEEP_INVALID = -1,

PWR_SLEEP_NOT_SPECIFIED = -2

} PWR_SleepState;

PWR PerfState

The PWR_PerfState type is an abstraction meant to describe the different
possible performance states in which hardware may be placed.

typedef enum {

PWR_PERF_FASTEST = 0,

PWR_PERF_FAST,

PWR_PERF_MEDIUM,

PWR_PERF_SLOW,

PWR_PERF_SLOWEST,

PWR_NUM_PERF_STATES,

/* */

PWR_PERF_INVALID = -1,

PWR_PERF_NOT_SPECIFIED = -2

} PWR_PerfState;

32

Chapter 5

Core (Common) Interface
Functions

Core, or so called Common, interface functions are functions that can be
used, at least in par, by most of the interfaces described in the Power API
specification. Core functions include the following areas:

• Initialization, required to use any of the functionality described in
this specification,

• Navigation functions allow the user to traverse the system description
and discover information about the underlying platform,

• Group functions, primarily a convenience abstraction,
• Attribute functions expose measurement and control functionality,
• Metadata functions allow the user to access additional information

about objects and attributes (often device or instrumentation specific
information),

• Statistics functions are used to generate statistical information based
on fundamental attribute information (measurements),

and other functionality that is common across a number of interfaces.

5.1 Initialization

Initialization using PWR_CntxtInit is required to use any of the function-
ality documented in this specification. The user supplies the type of the
context requested and their role. Currently, the specification’s only required
context type is PWR_CNTXT_DEFAULT. The context type is intended to be one

33

way in which the implementor can distinguish their implementation from the
standard specification and other implementations (see section 4.3). The user
must also supply their role (see page 22 for the PWR_Role definition). One
purpose of specifying the role is to convey what type of user they intend to
be, and therefore, how they would like to interact with or how the under-
lying implementation manages the privileges granted to the user/role com-
bination. A system administrator (PWR_ROLE_ADMIN) will desire and require
different capabilities, privileges and level of abstraction than the application
user (PWR_ROLE_APP), for example.

The user also has the opportunity to specify a name that will be associated
with the context. This feature is anticipated to be useful in supporting
advanced functionality. Initialization returns a context to the user. The
context contains the user’s view of the system, dependent on what type of
context was requested, the user’s role and implementation specifics. The
system description that the user is exposed to must conform to the rules
outlined in the specification (see sections 3.2 and 3.4). The context should
be destroyed (cleaned up) by using the PWR_CntxtDestroy function when no
longer needed.

Function Prototype for PWR_CntxtInit()

The PWR_CntxtInit function is required to be called before using any other
Power API function. The context returned is passed to other Power API
functions either explicitly as an argument or implicitly through an argument
associated with the context.

int PWR_CntxtInit(PWR_CntxtType type, PWR_Role role, const char*

name, PWR_Cntxt* context)

Arguments Description See page 22

for a
discussion
of contexts
and roles.

IN PWR_CntxtType type The requested context type.
IN PWR_Role role The role of the user.
IN const char* name User specified string name to be asso-

ciated with the context.
OUT PWR_Cntxt* context The user’s context.

34

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, context is set to a

valid user context.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_CntxtDestroy()

The PWR_CntxtDestroy function is used to destroy (clean up) the context
obtained with PWR_CntxtInit. The implementation is required to clean up,
unlink, destroy (as appropriate) all context resources as a result of this call.

int PWR_CntxtDestroy(PWR_Cntxt context)

Arguments Description
IN PWR_Cntxt context The context obtained using PWR_

CntxtInit the user wishes to destroy.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_FAILURE Upon FAILURE.

5.2 Hierarchy Navigation Functions

Hierarchy navigation (also called discovery) is accomplished using attributes
(EntryPoint, Type, Parent and Children) that are implicit to every object
in the system description whether defined in the specification or added by
the implementor. Navigation is accomplished using these attributes, through
the associated function calls, within the context made available to the user
upon initialization. After initialization the first call will generally be PWR_

CntxtGetEntryPoint to determine the user’s entry point in the system hi-
erarchy provided within the user’s context. Depending on the user, the in-
terface and the role, the context could contain a view of the entire system
description or a subset of the system description. Navigating through the
hierarchy is accomplished with PWR_ObjGetParent to navigate up and PWR_

ObjGetChildren to navigate down. To understand what kind of object was
returned with either of these calls the user can utilize PWR_ObjGetType call.

35

The name of the object can be discovered using the PWR_ObjGetName func-
tion and if the user has a name, the associated object can be discovered using
the PWR_CntxtGetObjByName function.

The Power API does not provide an explicit “Free Object” interface.
Specifically, objects returned by Power API interfaces do not need to be
later freed or released explicitly. This design choice was made in order to
keep usage of the Power API as simple as possible, with the potential cost of
an increased burden on the Power API implementor to limit implementation-
internal memory usage.

Function Prototype for PWR_CntxtGetEntryPoint()

The PWR_CntxtGetEntryPoint call is typically used immediately following
initialization. Whenever PWR_CntxtGetEntryPoint is called the implemen-
tation defined entry point (location) in the system description is returned.
PWR_CntxtGetEntryPoint can always be called to reposition or reorient the
user to the initial entry location.

int PWR_CntxtGetEntryPoint(PWR_Cntxt context, PWR_Obj* entry_

point)

Arguments Description
IN PWR_Cntxt context The user’s context.
OUT PWR_Obj* entry_point The user’s entry point into the system

description (the same for the life of
the context).

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, entry point set to

system description entry point (ob-
ject).

PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_ObjGetType()

The PWR_ObjGetType function returns the type of the object specified. See
page 23 for valid object types.

36

int PWR_ObjGetType(PWR_Obj object, PWR_ObjType* type)

Arguments Description
IN PWR_Obj object The object that the user wishes to de-

termine the type of.
OUT PWR_ObjType* type The type of the specified object.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, type is set to the

type of the specified object.
PWR_RET_FAILURE Upon FAILURE, type is set to PWR

OBJ INVALID.

Function Prototype for PWR_ObjGetName()

The PWR_ObjGetName function copies the name of the specified object into
the user provided buffer. See page 40 to get the object based on the unique
name using PWR_CntxtGetObjByName.

int PWR_ObjGetName(PWR_Obj object, char* dest, size_t len)

Arguments Description
IN PWR_Obj object The object that the user wishes to de-

termine the name of.
IN char* dest The address of the user provided

buffer.
IN size_t len The length of the user provided

buffer.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, the buffer will con-

tain the name of the object, the string
will include a terminating null byte.

PWR_RET_WARN_TRUNC Call succeeded, but the length of ob-
ject name was longer than the pro-
vided buffer and the name was trun-
cated.

PWR_RET_FAILURE Upon FAILURE.

37

Function Prototype for PWR_ObjGetSizeOfName()

The PWR_ObjGetSizeOfName returns the length of an object’s name. The
len parameter will contain the length of the name of the specified object
including any string terminators upon return. See page 40 to get the object
based on the unique name using PWR_CntxtGetObjByName.

int PWR_ObjGetSizeOfName(PWR_Obj object, size_t* len)

Arguments Description
IN PWR_Obj object The object that the user wishes to de-

termine the name of.
IN/OUT size_t* len The length of the user provided

buffer.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, the len parameter

will contain the size of buffer required
to successfully call PWR_ObjGetName,
including terminating null byte.

PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_ObjGetParent()

The PWR_ObjGetParent function is used to find the object immediately above
the specified object in the system description available to the user through
the current context. Note, currently, there are some cases where an object
has no parent, namely the platform object.

int PWR_ObjGetParent(PWR_Obj object, PWR_Obj* parent)

Arguments Description
IN PWR_Obj object The object that the user wishes to de-

termine the parent of.
OUT PWR_Obj* parent The parent object of the specified in-

put object.

38

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, parent set to parent

of specified object.
PWR_RET_WARN_NO_PARENT Call succeeded but specified object

does not have a parent.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_ObjGetChildren()

The PWR_ObjGetChildren function returns the child or children of the speci-
fied object. The caller is expected to check the return code of PWR_ObjGetChildren
to determine if the object has children or not. If the specified object has one
or more children, indicated by a return code of PWR_RET_SUCCESS, a new
group (PWR_Grp) is returned that contains the object’s children. The user is
responsible for destroying this group when it is no longer needed (see PWR_

GrpDestroy on page 42). If the specified object has no children, indicated
by a return code of PWR_RET_WARN_NO_CHILDREN, no group is returned and
the input (PWR_Grp) is not modified.

int PWR_ObjGetChildren(PWR_Obj objec, PWR_Grp* group)

Arguments Description
IN PWR_Obj objec The object that the user wishes to de-

termine the children of.
OUT PWR_Grp* group On input, this should be set to point

to an uninitialized PWR_Grp (i.e., the
caller should not call PWR_GrpCreate
ahead of time). If PWR_RET_SUCCESS

is returned, *group will be set to a
newly created group containing the
object’s children. If PWR_RET_WARN_
NO_CHILDREN is returned, the input
PWR_Grp is not modified.

39

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, group is set to a

newly created group containing the
child or children of specified object.

PWR_RET_WARN_NO_CHILDREN Call succeeded but specified object
does not have any children. The in-
put PWR_Grp is not modified.

PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_CntxtGetObjByName()

The PWR_CntxtGetObjByName function returns the object given the context
and unique object name. See page 37 to get the name of a specified object
using PWR_ObjGetName.

int PWR_CntxtGetObjByName(PWR_Cntxt context, const char * name,

PWR_Obj* object)

Arguments Description
IN PWR_Cntxt context The context containing the object

that the user wishes to retrieve given
its unique name. Note, the object
may be present in the system but not
available to the user through the cur-
rent context.

IN const char * name The unique name of the object that
the user wishes to retrieve.

OUT PWR_Obj* object The object that corresponds to the
name specified by the user.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, object is set to ob-

ject corresponding to name specified
by user.

PWR_RET_WARN_NO_OBJ_BY_NAME If no object exists corresponding to
name provided.

PWR_RET_FAILURE Upon FAILURE.

40

5.3 Group Functions

Group functions are provided as a convenience in situations, for example,
where an operation, or operations are required to be executed on multiple
objects. Rather than executing the same operation multiple times, once
for each object, some operations provide a group variant to streamline this
type of functionality. Groups can be dynamically created (PWR_GrpCreate)
when needed and can exist for short periods of time and destroyed with PWR_

GrpDestroy, or exist for the duration of the users context. Groups may not
contain multiple instances of the same object, i.e. duplicate objects are not
allowed. When a new group is the product of a function (PWR_GrpUnion,
PWR_GrpIntersection, PWR_GrpDifference) and the result of the function
operation is the empty set (no objects) an empty group (group with no ob-
jects) should be the result and the function should return PWR_RET_SUCCESS.
It is the responsibility of the user to clean up all groups produced as a result
of group functions using PWR_GrpDestroy. Groups can only contain objects
from a single PWR_cntxt. Group operations that involve multiple groups
must be performed with groups from the same context.

Function Prototype for PWR_GrpCreate()

The PWR_GrpCreate function is used to create a new group which will be
associated with and unique to the users context.

int PWR_GrpCreate(PWR_Cntxt context, PWR_Grp* group)

Arguments Description
IN PWR_Cntxt context The user’s context that the group,

when created, will be associated with.
OUT PWR_Grp* group The new (empty) group.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, group is set to new

(empty) group.
PWR_RET_FAILURE Upon FAILURE.

41

Function Prototype for PWR_GrpDestroy()

The PWR_GrpDestroy function is used to destroy (clean up) a group created
by a user.

int PWR_GrpDestroy(PWR_Grp group)

Arguments Description
IN PWR_Grp group The group that the user is acting on.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_GrpAddObj()

The PWR_GrpAddObj function is used to add a specified object to a specified
group. Duplicate objects are not allowed in groups. Adding an object that
would be a duplicate of one already in the group will result in no insertion
and returns PWR_RET_SUCCESS.

int PWR_GrpAddObj(PWR_Grp group, PWR_Obj object)

Arguments Description
IN/OUT PWR_Grp group The group that the user is acting on.
IN PWR_Obj object The object to be added to the speci-

fied group.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_GrpRemoveObj()

The PWR_GrpRemoveObj function is used to remove a specified object from a
specified group. Attempting to remove an object that is not a member of a
group will result in PWR_RET_SUCCESS.

42

int PWR_GrpRemoveObj(PWR_Grp group, PWR_Obj object)

Arguments Description
IN/OUT PWR_Grp group The group that the user is acting on.
IN PWR_Obj object The object to be removed from the

specified group.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_GrpGetNumObjs()

The PWR_GrpGetNumObjs function is used to get the number of objects con-
tained in the specified group.

int PWR_GrpGetNumObjs(PWR_Grp group)

Arguments Description
IN PWR_Grp group The group that the user is acting on.

Return Code(s) Description
int Upon SUCCESS, the number of ob-

jects contained in the specified group.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_GrpGetObjByIndx()

The PWR_GrpGetObjByIndx is used to get the object from the specified group
at the specified index.

int PWR_GrpGetObjByIndx(PWR_Grp group, int index, PWR_Obj*

object)

43

Arguments Description
IN PWR_Grp group The group that the user is acting on.
IN int index The index within the specified group

of the desired object.
OUT PWR_Obj* object The object at the specified index in

the specified group.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, object is set to ob-

ject at specified index.
PWR_RET_NO_OBJ_AT_INDEX No object at specified index in speci-

fied group.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_GrpDuplicate()

The PWR_GrpDuplicate function is used to duplicate an existing group. The
duplicate group is a new separate group from the original group specified.
Actions on the duplicate group do not affect the original group and vice
versa.

int PWR_GrpDuplicate(PWR_Grp group1, PWR_Grp* group2)

Arguments Description
IN PWR_Grp group1 The original group (group1).
OUT PWR_Grp* group2 Duplicate (group2) of the original

group (group1) specified by user even
if the original group contains no ob-
jects.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, duplicate group of

original group created.
PWR_RET_FAILURE Upon FAILURE.

44

Function Prototype for PWR_GrpUnion()

The PWR_GrpUnion function is used to create a group that is the union (∪)
of two specified groups. The union group created is a new separate group
from the original groups specified. Actions on the union group do not affect
the original groups and vice versa.

int PWR_GrpUnion(PWR_Grp group1, PWR_Grp group2, PWR_Grp* group3)

Arguments Description
IN PWR_Grp group1 The first of the two groups used in the

union, (∪) operation.
IN PWR_Grp group2 The second of the two groups used in

the union, (∪) operation.
OUT PWR_Grp* group3 he output group (group3) is the

union, (∪) operation, of the first
(group1) and second (group2) groups
specified. If the result of the union
operation is the empty set group3 is
an empty group (valid group with no
objects).

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, group3 contains the

union of group1 and group2.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_GrpIntersection()

The PWR_GrpIntersection function is used to create a group that is the
Intersection (∩) of two specified groups. The intersection group is a new
separate group from the original groups specified. Actions on the intersection
group do not affect the original groups and vice versa.

int PWR_GrpIntersection(PWR_Grp group1, PWR_Grp group2, PWR_Grp*

group3)

45

Arguments Description
IN PWR_Grp group1 The first of the two groups used in the

Intersection (∩) operation.
IN PWR_Grp group2 The second of the two groups used in

the intersection (∩) operation.
OUT PWR_Grp* group3 The output group (group3) is the in-

tersection, (∩) operation, of the first
(group1) and second (group2) groups
specified. If the result of the intersec-
tion operation is the empty set group3
is an empty group (valid group with
no objects).

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, group3 contains the

intersection of group1 and group2.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_GrpDifference()

The PWR_GrpDifference function is used to create a group that is the Dif-
ference (\) of two specified groups. The difference group is a new separate
group from the original groups specified. Actions on the difference group do
not affect the original groups and vice versa. In the event that the output
PWR_Grp contains no objects see 5.3 for the definition of the output, PWR_Grp.

int PWR_GrpDifference(PWR_Grp group1, PWR_Grp group2, PWR_Grp*

group3)

46

Arguments Description
IN PWR_Grp group1 The first of the two groups used in the

difference (\) operation.
IN PWR_Grp group2 The second of the two groups used in

the difference (\) operation.
OUT PWR_Grp* group3 The output group (group3) is the dif-

ference, (\) operation, of the first
(group1) and second (group2) groups
specified. If the result of the dif-
ference operation is the empty set
group3 is an empty group (valid
group with no objects).

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, group3 contains the

difference of group1 and group2.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR GrpSymDifference()

Function Prototype for PWR_GrpSymDifference()

The PWR_GrpSymDifference function is used to create a group that is the
Symmetric Difference (4) of two specified groups. The symmetric difference
group is a new separate group from the original groups specified. Actions
on the symmetric difference group do not affect the original groups and vice
versa. In the event that the output PWR_Grp contains no objects see 5.3 for
the definition of the output, PWR_Grp.

int PWR_GrpSymDifference(PWR_Grp group1, PWR_Grp group2, PWR_Grp*

group3)

47

Arguments Description
Input PWR_Grp group1 The first of the two groups used in the

symmetric difference (4) operation.
Input PWR_Grp group2 The second of the two groups used in

the symmetric difference (4) opera-
tion.

OutputPWR_Grp* group3 The output group (group3) is the
symmetric difference, (4) operation,
of the first (group1) and second
(group2) groups specified. If the re-
sult of the symmetric difference op-
eration is the empty set group3 is an
empty group (valid group with no ob-
jects).

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, group3 contains the

symmetric difference of group1 and
group2.

PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_CntxtGetGrpByName()

The PWR_CntxtGetGrpByName function returns a group in a given context
via a unique group name. This function is included to allow the user to
make use of groups that are provided with the initial context by the im-
plementation. The list of valid group names should be provided by the
vendor in their documentation. Due to the defined group names being ven-
dor specific, use of this function should be considered non-portable. The
group returned by this call must be functionally identical to a group cre-
ated via PWR_GrpCreate(). Like a group created with PWR_GrpCreate()

groups returned by PWR_CntxtGetGrpByName() must be destroyed with the
PWR_GrpDestroy() call.

int PWR_CntxtGetGrpByName(PWR_Cntxt context, const char* name,

PWR_grp* group)

48

Arguments Description
IN PWR_Cntxt context The context containing the group

that the user wishes to retrieve given
its unique name.

IN const char* name The unique name of the group that
the user wishes to retrieve.

OUT PWR_grp* group The implementation provided group
corresponding to the specified name.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, group corresponding

to the specified name.
PWR_RET_WARN_NO_GRP_BY_NAME If no implementation supplied group

exists corresponding to name pro-
vided.

PWR_RET_FAILURE Upon FAILURE.

5.4 Attribute Functions

The Attribute functions make up the foundation of the Power API specifi-
cation, providing measurement (get) and control (set) interfaces for a wide
range of power and energy related functionality. Get and set interfaces are
provided for single attribute/single object, multiple attribute/single object,
single attribute/multiple objects (group) and multiple attributes/multiple
objects (group). In each case the user specifies the attribute or attributes
to get or set. The valid attribute names are defined in the PWR_AttrName

structure (see page 24). A complete list of all the valid attributes and their
meanings can be found in table 5.1, section 5.8. The timestamp is a crit-
ical part of the get (measurement) interface for power and energy related
information. It is very important that the timestamp returned (PWR_Time)
be an accurate representation of when the value returned was measured to
the best possible temporal accuracy, not when the function was called. It
is required by the specification that the value returned is the value that
was measured as close as possible to when the get function was called. The
quality of the measurement and timestamp are device and implementation
dependent. Information about each attribute can be obtained through the
metadata interface, described in section 5.5.

49

Function Prototype for PWR_ObjAttrGetValue()

The PWR_ObjAttrGetValue function is provided to get the value of a single
specified attribute (PWR_AttrName attr) from a single specified object (PWR_
Obj object). The timestamp returned (PWR_Time *ts) should accurately
represent when the value was measured.

int PWR_ObjAttrGetValue(PWR_Obj object, PWR_AttrName attr, void*

value, PWR_Time* ts)

Arguments Description
IN PWR_Obj object The target object.
IN PWR_AttrName attr The target attribute. See section 4.5

for a list of available attributes
OUT void* value Pointer to caller-allocated storage, of

8 bytes, to hold the value read from
the attribute.

OUT PWR_Time* ts Pointer to caller-allocated storage to
hold the timestamp of when the value
was read from the attribute. Pass in
NULL if the timestamp is not needed.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_NOT_IMPLEMENTED The requested attribute is not sup-

ported for the target object.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_ObjAttrSetValue()

The PWR_ObjAttrSetValue function is provided to set the value of a single
specified attribute (PWR_AttrName attr) of a single specified object (PWR_
Obj object).

int PWR_ObjAttrSetValue(PWR_Obj object, PWR_AttrName attr, const

void* value)

50

Arguments Description
IN PWR_Obj object The target object.
IN PWR_AttrName attr The target attribute. See section 4.5

for a list of available attributes.
IN const void* value Pointer to the 8 byte value to write

to the attribute.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_NOT_IMPLEMENTED The requested attribute is not sup-

ported for the target object.
PWR_RET_BAD_VALUE The value was not appropriate for the

target attribute.
PWR_RET_OUT_OF_RANGE The value was out of range for the tar-

get attribute.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_StatusCreate()

The PWR_StatusCreate function is provided to create the PWR_Status ob-
ject that will be used in functions that perform multiple operations and
potentially return individual statuses for each operation. It is up to the
implementation to create the appropriate amount of storage for the PWR_

Status structure based on the implementation and the number of statuses
that will be held. PWR_Status objects can only be used in the context in
which they are created, attempting to use a PWR_Status object in a context
other than the one it was created for will result in an error. For example see
PWR_ObjAttrGetValues on page 54. Note, PWR_Status is an opaque han-
dle, its backing definition is determined by the implementor (see 4.1). It is
intended that the implementation only allocate space for failed operations.
Errors are read from the PWR_Status by popping them off the structure which
requires the structure to only be as large as the number of error returns re-
quire. When status objects are passed into a function, they are automatically
cleared, therefore errors should always be checked on a status object before
reuse. Note to Users: Caution is advised when reusing status objects in mul-
tiple threads. Common thread safety practices must be followed to ensure that
errors are properly caught. Creating status objects for each thread is advised

51

to avoid potential race conditions.

int PWR_StatusCreate(PWR_Cntxt context, PWR_Status* status)

Arguments Description
IN PWR_Cntxt context The context in which the new status

is to be used.
OUT PWR_Status* status The new status structure.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_StatusDestroy()

The PWR_StatusDestroy function is provided to destroy the PWR_Status

object created using PWR_StatusCreate (see page 51. Note, PWR_Status is
an opaque handle, its backing definition is determined by the implementor
(see 4.1).

int PWR_StatusDestroy(PWR_Status status)

Arguments Description
IN PWR_Status status The PWR_Status structure the user

wishes to destroy.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_StatusPopError()

The PWR_StatusPopError function is provided to iterate through the PWR_

Status object created using PWR_StatusCreate (see page 51) and populated
using any of the function calls that leverage this structure. Using this method
allows the PWR_Status structure to only grow as large as necessary storing

52

only error returns. Note, PWR_Status is an opaque handle, its backing defini-
tion is determined by the implementor (see 4.1). The PWR_AttrAccessError
structure that is returned will always have its obj, attr, and error fields
set to the object, attribute, and error code associated with the error. The
PWR_AttrAccessError structure’s index field will only be set for attribute
get functions (e.g., PWR_ObjAttrGetValues), and indicates the index in the
output value array where the error occurred. For attribute get functions,
errors are returned by PWR_StatusPopError in ascending order by index.

int PWR_StatusPopError(PWR_Status status, PWR_AttrAccessError*

error)

Arguments Description
IN PWR_Status status The PWR_Status structure the user

wishes to examine (iterate over).
OUT PWR_AttrAccessError*

error

Pointer to a PWR_AttrAccessError

structure (see page 25) to hold the
status that is popped from the PWR_

Status structure.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_EMPTY Returned when all errors have been

popped.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_StatusClear()

The PWR_StatusClear function is provided to clear a previously used PWR_

Status object created using PWR_StatusCreate, (see page 51) basically al-
lowing reuse of the same structure if multiple calls are executed and examined
in sequence. Note, PWR_Status is an opaque handle, its backing definition is
determined by the implementor (see 4.1).

int PWR_StatusClear(PWR_Status status)

53

Arguments Description
IN PWR_Status status The PWR_Status structure the user

wishes to clear (reuse).

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_ObjAttrGetValues()

The PWR_ObjAttrGetValues function is provided to get the value of multiple
specified attributes listed in the PWR_AttrName attrs[] array from a single
specified object – get multiple attribute values from a single object.
The timestamps returned in the PWR_Time ts[] array should accurately rep-
resent, and correspond sequentially, with the time each value returned was
measured. If the function fails for one or more attributes, the PWR_Status

status structure returned can be examined for additional information re-
garding the failure using PWR_StatusPopError (see page 52).

int PWR_ObjAttrGetValues(PWR_Obj object, int count, const PWR_

AttrName attrs[], void* values, PWR_Time ts[], PWR_Status status)

54

Arguments Description
IN PWR_Obj object The target object.
IN int count The number of elements in the

attrs[], *values, and ts[] arrays.
IN const PWR_AttrName

attrs[]

The array of target attributes to read.
See section 4.5 for a list of available
attributes.

OUT void* values The array of values read, one value
for each target attribute. This should
point to caller-allocated storage of
at least (count * 8) bytes. Upon
success, the value read for attribute
attrs[i] will be located at address
(values+(i*8)).

OUT PWR_Time ts[] The array of timestamps, one times-
tamp for each value read. This should
point to caller-allocated storage of
at least (count*sizeof(PWR_Time)).
Upon success, the timestamp of the
value read for attrs[i] will be lo-
cated at ts[i]. Pass in NULL if times-
tamps are not needed.

OUT PWR_Status status Upon PWR_RET_FAILURE, status con-
tains information about each failure
that occurred. Pass in NULL if failure
information is not needed.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, all operations suc-

ceeded.
PWR_RET_FAILURE Upon FAILURE, one or more oper-

ations failed. Examine PWR_Status*

status to determine the operations
that failed. All other operations suc-
ceeded.

55

Function Prototype for PWR_ObjAttrSetValues()

The PWR_ObjAttrSetValues function is provided to set the value of multiple
specified attributes in the (PWR_AttrName attrs[]) array of a specified ob-
ject – set multiple attribute values of a single object. If the function
fails for one or more attributes, the PWR_Status status structure returned
can be examined for additional information regarding the failure using PWR_

StatusPopError (see page 52).

int PWR_ObjAttrSetValues(PWR_Obj object, int count, const PWR_

AttrName attrs[], const void* values, PWR_Status status)

Arguments Description
IN PWR_Obj object The target object.
IN int count The number of elements in the

attrs[] and *values arrays.
IN const PWR_AttrName

attrs[]

The array of target attributes to
write. See section 4.5 for a list of
available attributes.

IN const void* values The array of values to write, one value
for each target attribute. The value
to write to attribute attrs[i] is lo-
cated at address (values+(i*8)).

OUT PWR_Status status Upon PWR_RET_FAILURE, status con-
tains information about each failure
that occurred. Pass in NULL if failure
information is not needed.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, all operations suc-

ceeded.
PWR_RET_FAILURE Upon FAILURE, one or more oper-

ations failed. Examine PWR_Status*

status to determine the operations
that failed. All other operations suc-
ceeded.

56

Function Prototype for PWR_ObjAttrIsValid()

The PWR_ObjAttrIsValid function is used to determine if a specified at-
tribute (PWR_AttrName attr) is valid for the specified object.

int PWR_ObjAttrIsValid(PWR_Obj object, PWR_AttrName attr)

Arguments Description
IN PWR_Obj object The object that the user is acting on.
IN PWR_AttrName attr The attribute the user wishes to con-

firm is valid for the specified object.
See the PWR_AttrName type definition
in section 4.5.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_GrpAttrGetValue()

The PWR_GrpAttrGetValue function is provided to get the value of a single
specified attribute (PWR_AttrName attr) from all the objects in a specified
group (PWR_Grp group) – get a single attribute value from multiple
objects. The timestamps returned in the PWR_Time ts[] array should ac-
curately represent, and correspond sequentially, with the time each value
returned was measured. If the function fails for one or more attributes, the
PWR_Status status structure returned can be examined for additional in-
formation regarding the failure using PWR_StatusPopError (see page 52).
PWR_GrpAttrGetValue will continue to attempt to gather values for the en-
tire group, even if an error occurs for a subset of the members of that group.

int PWR_GrpAttrGetValue(PWR_Grp group, PWR_Attrgame attr, void*

values, PWR_Time ts[], PWR_Status status)

57

Arguments Description
IN PWR_Grp group The target group.
IN PWR_Attrgame attr The target attribute to retrieve (get)

from each object in the target group.
See section 4.5 for a list of available
attributes.

OUT void* values The array of attribute values re-
trieved, one value for each object
in the target group. This should
point to caller-allocated storage of
at least (PWR_GrpGetNumObjs() * 8)
bytes. Upon success, the value re-
trieved for the object at index i

within the group will be located at
address (values+(i*8)).

OUT PWR_Time ts[] The array of timestamps, one
timestamp for each value re-
trieved. This should point to caller-
allocated storage of at least (PWR_
GrpGetNumObjs()*sizeof(PWR_

Time)). Upon success, the times-
tamp of the value retrieved for the
object at index i within the group
will be located at ts[i]. Pass in NULL

if timestamps are not needed.
OUT PWR_Status status Upon PWR_RET_FAILURE, status con-

tains information about each failure
that occurred. Pass in NULL if failure
information is not needed.

58

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, all operations suc-

ceeded.
PWR_RET_FAILURE Upon FAILURE, one or more oper-

ations failed. Examine PWR_Status*

status to determine the operations
that failed. All other operations suc-
ceeded.

Function Prototype for PWR_GrpAttrSetValue()

The PWR_GrpAttrSetValue function is provided to set the value of a single
specified attribute (PWR_AttrName attr) of each object in a specified group
– set a single attribute value on multiple objects. If the function
fails for one or more attributes, the PWR_Status status structure returned
can be examined for additional information regarding the failure using PWR_

StatusPopError (see page 52). PWR_GrpAttrSetValue will continue to at-
tempt to set values for the entire group, even if an error occurs for a subset
of the members of that group.

int PWR_GrpAttrSetValue(PWR_Grp group, PWR_AttrName attr, const

void* value, PWR_Status status)

Arguments Description
IN PWR_Grp group The target group.
IN PWR_AttrName attr The target attribute to set for each

object in the target group. See sec-
tion 4.5 for a list of available at-
tributes.

IN const void* value The pointer to a single 8 byte at-
tribute value to set for each object in
the target group.

OUT PWR_Status status Upon PWR_RET_FAILURE, status con-
tains information about each failure
that occurred. Pass in NULL if failure
information is not needed.

59

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, all operations suc-

ceeded.
PWR_RET_FAILURE Upon FAILURE, one or more oper-

ations failed. Examine PWR_Status*

status to determine the operations
that failed. All other operations suc-
ceeded.

Function Prototype for PWR_GrpAttrGetValues()

The PWR_GrpAttrGetValues function is provided to get the value of multi-
ple specified attributes listed in the PWR_AttrName attrs[] array from each
object in a specified group – get multiple attribute values from multi-
ple objects. The timestamps returned in the PWR_Time ts[] array should
accurately represent, and correspond sequentially, with the time each value
returned was measured. If the function fails for one or more attributes, the
PWR_Status status structure returned can be examined for additional in-
formation regarding the failure using PWR_StatusPopError (see page 52).
PWR_GrpAttrGetValues will continue to attempt to gather values for the en-
tire group, even if an error occurs for a subset of the members or attributes
requested in the object group.

int PWR_GrpAttrGetValues(PWR_Grp group, int count, const PWR_

AttrName attrs[], void* values, PWR_Time ts[], PWR_Status status)

60

Arguments Description
IN PWR_Grp group The target group.
IN int count The number of elements in the

attrs[] array.
IN const PWR_AttrName

attrs[]

he array specifying the set of target
attributes to read for each object in
the target group. See section 4.5 for
a list of available attributes.

OUT void* values The array of attribute values re-
trieved. This should point to
caller-allocated storage of at least
(PWR_GrpGetNumObjs()*count*8)
bytes. Upon success, the value
read for attribute attrs[i] for
the object at index j within the
group will be located at address
(values+(j*count*8)+(i*8)).

OutputPWR_Time ts[] The array of timestamps, one
timestamp for each value re-
trieved. This should point to caller-
allocated storage of at least (PWR_
GrpGetNumObjs()*count*sizeof(PWR_

Time)). Upon success, the timestamp
of the value retrieved for attribute
attrs[i] for the object at index
j within the group will be located
at ts[(j*count)+i]. Pass in NULL if
timestamps are not needed.

OUT PWR_Status status Upon PWR_RET_FAILURE, status con-
tains information about each failure
that occurred. Pass in NULL if failure
information is not needed.

61

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, all operations suc-

ceeded.
PWR_RET_FAILURE Upon FAILURE, one or more oper-

ations failed. Examine PWR_Status*

status to determine the operations
that failed. All other operations suc-
ceeded.

Function Prototype for PWR_GrpAttrSetValues()

The PWR_GrpAttrSetValues function is provided to set the value of multi-
ple specified attributes listed in the (PWR_AttrName attrs[]) array of each
object in a specified group – set multiple attribute values on mul-
tiple objects. If the function fails for one or more attributes, the PWR_

Status status structure returned can be examined for additional informa-
tion regarding the failure using PWR_StatusPopError (see page 52). PWR_

GrpAttrSetValues will continue to attempt to set values for the entire group
and requested attributes, even if an error occurs for a subset of the members
or attributes of that object group.

int PWR_GrpAttrSetValues(PWR_Grp group, int count, const PWR_

AttrName attrs[], const void* values, PWR_Status status)

62

Arguments Description
IN PWR_Grp group The target group.
IN int count The number of elements in the

attrs[] and *values arrays.
IN const PWR_AttrName

attrs[]

The array specifying the set of target
attributes to set for each object in the
target group. See section 4.5 for a list
of available at tributes.

IN const void* values The array of attribute values to set
for each object in the group. The
value to write to attribute attrs[i]

of each object is located at address
(values+(i*8)).

OUT PWR_Status status Upon PWR_RET_FAILURE, status con-
tains information about each failure
that occurred. Pass in NULL if failure
information is not needed.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, all operations suc-

ceeded.
PWR_RET_FAILURE Upon FAILURE, one or more oper-

ations failed. Examine PWR_Status*

status to determine the operations
that failed. All other operations suc-
ceeded.

5.5 Metadata Functions

The metadata functions provide an interface for getting more descriptive
information about an object or attribute, such as estimated measurement
accuracy or the list of valid values for a given attribute. This information
is often useful for getting a better understanding of the meaning of objects
and attributes and how to interpret the values read from attributes. While
most metadata is read-only information, some metadata is potentially con-
figurable, such as the underlying power sampling rate used to calculate PWR_

ATTR_ENERGY values.

63

Table 5.2 on page 29 lists the available types of metadata. Not all of the
metadata items listed will be available for every object and attribute pair.
The exact set is dependent on the capabilities of the underlying hardware and
Power API implementation. If a requested metadata item is not available a
PWR_RET_NO_ATTRIB error is returned at runtime.

The majority of metadata items will require that both an object instance
and attribute name pair be specified, but a few may be defined for object
instances alone. For example, the metadata strings PWR_MD_NAME, PWR_MD_
DESC, and PWR_MD_VENDOR_INFO may be available for individual object in-
stances, with no associated attribute name specified. In these cases, the
attribute name requested should be set to PWR_ATTR_NOT_SPECIFIED. One
important use case for these informational strings, especially the PWR_MD_

VENDOR_INFO string, is for a Power API user to capture these strings with
each run to record configuration and provenance information. For example,
a user may chose to log the PWR_MD_VENDOR_INFO string for the top-level
platform object in the output of each run.

The metadata interface consists of three functions. The PWR_ObjAttrGetMeta
and PWR_ObjAttrSetMeta functions allow metadata values to be retrieved
and set, respectively. The third function, PWR_MetaValueAtIndex, provides
a way to enumerate through an attribute’s list of available values. This is
useful for attributes that have a small, well-defined set of discrete values
(e.g., PWR_ATTR_PSTATE). It is expected that where a set of discrete values
can be described in a logical order that the index ordering is from smallest
(lowest) to largest (highest) value. The remainder of this section describes
the metadata functions in more detail.

Function Prototype for PWR_ObjAttrGetMeta()

The PWR_ObjAttrGetMeta function returns the requested metadata item for
the specified object or object and attribute name pair. The caller must allo-
cate enough storage to hold the returned metadata value and pass a pointer
to the storage in the value argument. The required size can be determined
by consulting the type column of Table 5.2. In the case of string metadata
items (i.e., type char *), the required string length can be determined by
getting the appropriate length metadata item, which is the original meta-
data name with the _LEN suffix added. For example, the required string
length for the PWR_MD_VENDOR_INFO string can be determined by retrieving
the PWR_MD_VENDOR_INFO_LEN metadata item.

64

PWR_ObjAttrGetMeta(PWR_Obj obj, iPWR_AttrName attr, PWR_MetaName

meta, void* value)

Arguments Description
IN PWR_Obj obj The target object.
IN iPWR_AttrName attr The target attribute. See the PWR_

AttrName type definition in Section
4.5 for the list of possible attributes.
If object-only metadata is being re-
quested, this argument should be set
to PWR_ATTR_NOT_SPECIFIED.

IN PWR_MetaName meta The target metadata item to get.
See the PWR_MetaName type definition
in Section 4.6 for the list of possi-
ble metadata items, with detailed de-
scriptions provided in Table 5.2.

OUT void* value Pointer to the caller allocated stor-
age to hold the value of the requested
metadata item. See Table 5.2 for type
information.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_NO_ATTRIB The attribute specified is not imple-

mented.
PWR_RET_NO_META The metadata specified is not imple-

mented.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_ObjAttrSetMeta()

The PWR_ObjAttrSetMeta function sets the specified metadata item for the
target object or object and attribute name pair. The caller must pass a
pointer to the new value for the specified metadata item in the value ar-
gument. The required type for the value can be determined by consulting
the type column of Table 5.2. In the case of string metadata items (i.e.,
type char *), the maximum string length can be determined by getting the
appropriate length metadata item, which is the original metadata name with

65

the _LEN suffix added. For example, the maximum string length for the
PWR_MD_VENDOR_INFO string can be determined by retrieving the PWR_MD_

VENDOR_INFO_LEN metadata item.

int PWR_ObjAttrSetMeta(PWR_Obj obj, PWR_AttrName attr, PWR_

MetaName meta, const void* value)

Arguments Description
IN PWR_Obj obj The target object.
IN PWR_AttrName attr The target attribute. See the PWR_

AttrName type definition in Section
4.5 for the list of possible attributes.
If object-only metadatais being set,
this argument should be set to PWR_

ATTR_NOT_SPECIFIED.
IN PWR_MetaName meta The target metadata item to set. See

the PWR_MetaName type definition in
Section 4.6 for the list of possible
metadata items, with detailed de-
scriptions provided in Table 5.2.

IN const void* value Pointer to the new value for the meta-
data item. See Table 5.2 for type in-
formation.

Return Code(s) Description
PWR_RET_NO_ATTRIB The attribute specified is not imple-

mented.
PWR_RET_NO_META The metadata specified is not imple-

mented.
PWR_RET_READ_ONLY The metadata specified is not settable.
PWR_RET_BAD_VALUE The value specified is not valid.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_MetaValueAtIndex()

The PWR_MetaValueAtIndex function allows the available values for a given
attribute to be enumerated. It is assumed that the set of valid values is static
and has size equal to the value returned by the PWR_MD_NUM metadata item.

66

Once the value of PWR_MD_NUM is known, PWR_MetaValueAtIndex() can be
called repeatedly with index from 0 to PWR_MD_NUM - 1 to retrieve the list of
valid values for the target attribute. Each call will return the value at the
specified index as well as a human-readable string representing the value in
human readable format. If an attribute is not enumerable, then PWR_MD_NUM

will return 0. In general any attribute that does not have a small set of
discrete valid values will return 0 when PWR_MD_NUM is requested, to indicate
that the attribute is not enumerable.

int PWR_MetaValueAtIndex(PWR_Obj obj, PWR_AttrName attr, unsigned

int index, void* value, char* value_str)

67

Arguments Description
IN PWR_Obj obj The target object.
IN PWR_AttrName attr The target attribute. See the PWR_

AttrName type definition in Section
4.5 for the list of possible attributes.

IN unsigned int index The index of the metadata item value
to look up. The PWR_MD_NUM meta-
data item returns the number of pos-
sible values, indexed from 0 to PWR_

MD_NUM - 1.
OUT void* value Pointer to the caller allocated stor-

age to hold the value of the requested
metadata item value. See Table 5.2
for type inform ation. The storage
must be sized appropriately for the
metadata value type. If the value is
not required, this argument should be
set to NULL.

OUT char* value_str Pointer to the caller allocated stor-
age to hold the human-readable C-
style NULL-terminated ASCII string
representing the metadata item value.
The storage passed in must have size
in bytes of at least the value returned
by the PWR_MD_VALUE_LEN metadata
item. If the string representation is
not required this argument should be
set to NULL.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_NO_ATTRIB The attribute specified is not imple-

mented.
PWR_RET_BAD_INDEX The index specified is not valid.
PWR_RET_FAILURE Upon FAILURE.

68

5.6 Statistics Functions

The statistics functions provide an interface to generate statistics related to
specific attributes of an object or group. The interface allows for generat-
ing statistics somewhat real-time or mining historic statistics, assuming that
the necessary data is retained. The interface for collecting historic statistics
is much more straight forward and can be accomplished with a single call,
PWR_ObjGetStat for a single object and PWR_GrpGetStats for a group of
objects. The interface for collecting real-time statistics is designed to inter-
face with hardware or layers of software that require a notification of when
information collection should begin and when it can be terminated. The re-
quested statistic can then be mined for this window of time, even while the
window remains open. The sequence of calls for mining real-time statistics is
as follows. The user creates a statistic object using the PWR_ObjCreateStat

call when collecting a statistic on a single object or the PWR_GrpCreateStat

call when the statistic is to be collected on a group of objects. Basically,
a tuple of information is provided, an object or group, the attribute (PWR_
ATTR_POWER for example, see page 24) that the user would like the statistic
for and the statistic (PWR_ATTR_STAT_AVG for example, see page 29). Notice
that the statistic to be collected is part of the required parameters for cre-
ating a statistics object, while it is provided at the time of retrieval when
collecting historic statistics. The reason for this approach is that the un-
derlying hardware or software layer needs to understand what information
to start collecting to support the requested statistic. Buffers are typically
a limiting factor in the capabilities that can be supported by an implemen-
tation. Requiring an implementation to collect the data necessary for any
potential statistic could require a great deal of space. Once a statistics object
is created (for an object or a group) the user indicates the beginning of the
window by calling PWR_StatStart. Once PWR_StatStart is called the user
can retrieve the statistic information associated with the statistics object by
calling PWR_StatGetValue, when the statistics object was created for a single
object, or PWR_StatGetValues, when the statistics object was created for a
group of objects. The start time is always the time that the user calls PWR_

StatStart on the statistics object. The user can call PWR_StatGetValue
or PWR_StatGetValues as many times as they wish prior to calling PWR_

StatStop. If PWR_StatStop has not been called, the stop time is the time the
user calls PWR_StatGetValue or PWR_StatGetValues. Once PWR_StatStop

has been called the stop time if fixed for that statistics object. Essentially,

69

the implementation at this time has everything it needs to calculate the re-
turn value or values for PWR_StatGetValue or PWR_StatGetValues. The
user is responsible for checking the start and stop times returned along with
the statistics value. The start and stop times may be different for two rea-
sons. In the normal case, the implementation is required to return start
and stop times that accurately represent when the actual data was sampled
that was used in calculting the statistics value. As such, the returned values
could differ from the times set by the real-time statistics functions. In the
abnormal case, the start time, and possibly the stop time, could differ more
significantly from the times PWR_StatStart and PWR_StatStop were called
or the stop time determined by calling either of the PWR_StatGetValue or
PWR_StatGetValues functions before PWR_StatStop has been called. If this
occurs, due to a resource exhaustion issue for example, the implementation is
required to either return a failure or return a statistics value and the accurate
time values representing the statistics value returned along with a warning
indicating that the time window has been truncated. A truncated time-frame
is still required to as closely as possible represent the data collection time
the statistic is generated based on. It is then up to the user to determine
if the value returned is useful or not. Statistics objects can be re-used by
calling PWR_StatClear, which indicates to the implementation that any data
retained associated with the statistic object can be released. To begin an-
other statistics window the user repeats the process just outlined. When the
user is done with a statistics object they should call PWR_StatDestroy.

Function Prototype for PWR_ObjGetStat()

The PWR_ObjGetStat function is used to retrieve a historic statistic using
an object, attribute, statistic tuple. Note that the PWR_ObjGetStat call
operates on single objects only, not groups of objects. The PWR_ObjGetStat

is a standalone call is used for historic data collection only. To retrieve
a statistic from a group of objects, the PWR_GrpGetStats call on page 71
should be used.

PWR_ObjGetStat(PWR_Obj object, PWR_AttrName name, PWR_AttrStat

statistic, PWR_TimePeriod* statTime, double* value)

70

Arguments Description
IN PWR_Obj object The object to collect the statistic for

(part of the object, attribute statistic
triple

IN PWR_AttrName name The attribute to act on, see the PWR_

AttrName type definition in section
4.5.

IN PWR_AttrStat statistic ified attribute, see PWR_AttrStat

type definition in section 4.9.
IN/OUT PWR_TimePeriod*

statTime

Time structure that initially must
contain the times (start, stop and in-
stant if appropriate) requested by the
user (Input) and the times, possibly
different, representing the period of
the statistic data returned (Output),
see page 28.

OUT double* value pointer to space (double) to store the
statistic

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_GrpGetStats()

The PWR_GrpGetStats function is used to retrieve historic statistic for a
group of objects. Each object in the group is combined with the attribute
and statistic specified to form the object, attribute, statistic tuple. Note
that the PWR_GrpGetStats call operates on one or more objects in a group.
The PWR_GrpGetStats is a standalone call is used for historic data collection
only. To retrieve a statistic from a single object, the PWR_ObjGetStat call
on page 70 should be used.

int PWR_GrpGetStats(PWR_Grp group, PWR_AttrName name, PWR_

AttrStat statistic, PWR_TimePeriod* statTime, double values[],

PWR_TimePeriod statTimes[])

71

Arguments Description
IN PWR_Grp group The group to collect the statistic for.

Each object in the group forms the
object, attribute, statistic triple.

IN PWR_AttrName name The attribute to act on, see the PWR_

AttrName type definition in section
4.5.

IN PWR_AttrStat statistic The desired statistic for the specified
attribute, see PWR_AttrStat type def-
inition in section 4.9.

IN PWR_TimePeriod*

statTime

Time structure that must contain
the times (start, stop and instant if
appropriate) requested by the user.
Note this is Input only, see page ??.

OUT double values[] Space (of double) allocated by user to
store an array of statistic values

OUT PWR_TimePeriod

statTimes[]

Space allocated by user to hold an
array of time structures representing
the actual times associated with each
statistic value returned in values[], see
page 28.

Return Code(s) Description
PWR_RET_SUCCESS SUCCESS.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_ObjCreateStat()

The PWR_ObjCreateStat function is used to create a statistics object that
will be used for real-time statistics gathering operations for a single object.
The user specifies the object, attribute, statistic tuple that all subsequent
requests using the statistics object created will be based on. Note, this call
is not used for historic statistic gathering, see PWR_ObjGetStat on page 70
and PWR_GrpGetStats on page 71.

int PWR_ObjCreateStat(PWR_Obj object, PWR_AttrName name, PWR_

AttrStat statistic, PWR_Stat* stat)

72

Arguments Description
IN PWR_Obj object The object to act on.
IN PWR_AttrName name The attribute to act on, see the PWR_

AttrName type definition in section
4.5.

IN PWR_AttrStat statistic The desired statistic for the specified
attribute, see PWR_AttrStat type def-
inition in section 4.9.

OUT PWR_Stat* stat The stat for the object, attribute,
statistic triple specified.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, valid stat is created.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_GrpCreateStat()

The PWR_GrpCreateStat function is used to create a statistics object that
will be used for real-time statistics gathering operations for a group of objects.
The user specifies the group, attribute, statistic tuple that all subsequent
requests using the statistics object created will be based on. Note, this call
is not used for historic statistic gathering, see PWR_ObjGetStat on page 70
and PWR_GrpGetStats on page 71.

int PWR_GrpCreateStat(PWR_Grp group, PWR_AttrName name, PWR_

AttrStat statistic, PWR_Stat* stat)

Arguments Description
IN PWR_Grp group The group to act on.
IN PWR_AttrName name The attribute to act on, see the PWR_

AttrName type definition in section
4.5.

IN PWR_AttrStat statistic The desired statistic for the specified
attribute, see PWR_AttrStat type def-
inition in section 4.9.

OUT PWR_Stat* stat The stat for the group, attribute,
statistic triple specified.

73

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, valid stat is created.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_StatStart()

The PWR_StatStart function is used to indicate to a device or software layer
to start the window of time that the statistic requested will be calculated
over. The PWR_StatStart function is used for real-time statistics gathering
only.

int PWR_StatStart(PWR_Stat statObj)

Arguments Description
IN PWR_Stat statObj The statistics object to begin collect-

ing the specified statistic for (speci-
fied in PWR_ObjCreateStat or PWR_

GrpCreateStat).

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_StatStop()

The PWR_StatStop function is used to indicate to a device or software layer
to stop the window of time that the statistic requested will be calculated
over. The PWR_StatStop function is used for real-time statistics gathering
only.

int PWR_StatStop(PWR_Stat statObj)

Arguments Description
IN PWR_Stat statObj The statistics object to stop collect-

ing the specified statistic for (speci-
fied in PWR_ObjCreateStat or PWR_

GrpCreateStat).

74

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_StatClear()

The PWR_StatClear function is used to indicate to a device or software layer
to clear or reset the window of time that the statistic requested will be
calculated over. The clear effectively restarts the window, so there is no
need to call PWR_StatStart again. The PWR_StatClear function is used for
real-time statistics gathering only.

int PWR_StatClear(PWR_Stat statObj)

Arguments Description
IN PWR_Stat statObj The statistics object to clear (effec-

tively reset) for the specified statistic
(specified in PWR_ObjCreateStat or
PWR_GrpCreateStat).

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_StatGetValue()

The PWR_StatGetValue function is used to retrieve the statistic and re-
lated time stamp information from the statistics object created using PWR_

ObjCreateStat. Note that the PWR_StatGetValue call operates on single
objects only, not groups of objects. The start time for the window the statis-
tic is calculated over is set by calling PWR_StatStart. The stop time is set by
either calling this function, PWR_StatGetValue, or set for the statistics ob-
ject by calling PWR_StatStop. Each time PWR_StatGetValue is called prior
to calling PWR_StatStop the time PWR_StatGetValue is called is used as the
stop time for the statistics calculation. From the specification standpoint,
there is no limit to how often PWR_StatGetValue can be called. The start,

75

stop and, depending on the statistic requested, the instant time values re-
turned should as accurately as possible represent the time-stamps of the data
used in the statistics value returned. The PWR_StatGetValue function is used
for real-time statistics gathering only. If a single value return is desired for
a group of objects, the PWR_StatGetReduce call on page 77 should be used.

int PWR_StatGetValue(PWR_Stat statObj, double* value, PWR_

TimePeriod* statTimes)

Arguments Description
IN PWR_Stat statObj The statistics object to collect the

statistic for (the object, attribute
stat triple is specified in PWR_

ObjCreateStat).
OUT double* value pointer to space (double) to store the

statistic
OUT PWR_TimePeriod*

statTimes

Time structure that contains the
timestamps pertinent to the specific
statistic value, see page 28.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_FAILURE Upon FAILURE.
PWR_RET_WARN_TRUNC When the time window has been trun-

cated by the implementation, start
and stop times may differ significantly
from those set by the interface.

Function Prototype for PWR_StatGetValues()

The PWR_StatGetValues function is used to retrieve the statistic and re-
lated time stamp information from the statistics object(s) created using PWR_

GrpCreateStat. Note that the PWR_StatGetValues call operates on one or
more objects in the group specified in the PWR_GrpCreateStat call. The
start time for the window the statistic is calculated over is set by calling
PWR_StatStart. The stop time is set by either calling this function, PWR_
StatGetValues, or set for the statistics object by calling PWR_StatStop.
Each time PWR_StatGetValues is called prior to calling PWR_StatStop the

76

time PWR_StatGetValues is called is used as the stop time for the statis-
tics calculation. From the specification standpoint, there is no limit to how
often PWR_StatGetValues can be called. The start, stop and, depending
on the statistic requested, the instant time values for each individual object
returned (in the Output PWR_TimePeriod structure) should as accurately as
possible represent the time-stamps of the data used in the statistics values
returned. The PWR_StatGetValues function is used for real-time statistics
gathering only. If a single value return is desired for a group of objects, the
PWR_StatGetReduce call on page 77 should be used.

int PWR_StatGetValues(PWR_Stat statObj, double values[], PWR_

TimePeriod statTimes[])

Arguments Description
IN PWR_Stat statObj The statistics object to collect the

statistic for (the group, attribute
stat triple is specified in PWR_

GrpCreateStat).
OUT double values[] Space allocated by user to hold array

of values (statistics).
OUT PWR_TimePeriod

statTimes[]

Space allocated by user to hold array
of time structures that contains the
timestamps pertinent to each specific
statistic value, see page ??

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_FAILURE Upon FAILURE.
PWR_RET_WARN_TRUNC When the time window has been trun-

cated by the implementation, start
and stop times may differ significantly
from those set by the interface.

Function Prototype for PWR_StatGetReduce()

The PWR_StatGetReduce function is used to reduce a set of per-object statis-
tics down into a single returned value. The inputs are a PWR_Stat object,
and a reduction operation. The reduction operation can be thought of as

77

occurring in two phases. In the first phase, a statistic is calculated for each
object associated with the input PWR_Stat, one statistic value per object.
The objects, target attribute, and desired statistic to calculate are speci-
fied when the PWR_Stat is created. In the second phase, the set of statistic
values calculated in the first phase are combined into a single result value.
How this occurs is determined by the reduction operation that was specified
by the caller. For example, the PWR_ATTR_STAT_AVG reduction operation re-
turns the average of the per-object statistics calculated in the first phase.
The start time for the window the statistic is calculated over is set by calling
PWR_StatStart. The stop time used for the statistics calculated in the first
phase are based on the time this function is called, or set for the statistics
object from a previous call to PWR_StatStop. PWR_StatGetReduce is pro-
vided such that optimizations may be possible when gathering the statistics
of each member in a group of objects. An example of such an operation
would be calculating an average, where gathering the values is done through
a tree topology overlay network, where averages can be calculated at each
parent of multiple children in the tree. Note that the implementation of
PWR_StatGetReduce can be done in its more simplistic form by calling PWR_

StatGetValues and performing the required operation on the returned set
of values to return the requested reduction operation.

int PWR_StatGetReduce(PWR_Stat statObj, PWR_AttrStat reduceOp,

int* index, double* result, PWR_Time* instant)

78

Arguments Description
IN PWR_Stat statObj The statistics object to collect the

statistic for (the object group, at-
tribute, stat triple is specified in PWR_

GrpCreateStat).
IN PWR_AttrStat reduceOp The reduction operation to perform.
OUT int* index The index of the object in the sta-

tObj’s associated object group that
provided the reduction result. This
value is only set for reduction oper-
ations where it makes sense, such as
PWR ATTR STAT MIN and PWR
ATTR STAT MAX.

OUT double* result The result of the reduction operation,
which is always a single double value.

OUT PWR_Time* instant For statistics where a point in time
that the value occured is valid (e.g.
max and min), this is the timestamp
when that value was observed.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_FAILURE Upon FAILURE.
PWR_RET_WARN_TRUNC When the time window has been trun-

cated by the implementation.

Function Prototype for PWR_GrpGetReduce()

The PWR_GrpGetReduce function is used to reduce a set of per-object statis-
tics down into a single returned value. Unlike PWR_StatGetReduce that
is used for real time statistics gathering, PWR_GrpGetReduce is meant to
gather statistics for historical data. Therefore, this call is much like the PWR_

GrpGetStats function, with an added reduction. The inputs are a PWR_Grp

object, an attribute, a statistic, a reduction operation and a time period.
The reduction operation can be thought of as occurring in two phases. In
the first phase, a statistic is calculated for each object associated with the
input group, one statistic value per object. The objects, target attribute,
and desired statistic to calculate are specified as inputs to this function.. In

79

the second phase, the set of statistic values calculated in the first phase are
combined into a single result value. How this occurs is determined by the
reduction operation that was specified by the caller. For example, the PWR_

ATTR_STAT_AVG reduction operation returns the average of the per-object
statistics calculated in the first phase. Upon success, the returned PWR_

TimePeriod structure will have its time fields set to the timestamps that are
most closely associated with the result of the reduction operation. For cer-
tain reduction operations, some timestamps in the returned PWR_TimePeriod

may not be valid output. For example, in the case of a averaging reduction,
an associated “instant” timestamp is not a useful value. For minimum and
maximum operations, the “instant” timestamp is useful and will represent
the time at which the maximum or minimum was observed. In all cases the
start and stop timestamps in the PWR_TimePeriod will represent the time
window over which the the value was calculated. PWR_GrpGetReduce is pro-
vided such that optimizations may be possible when gathering the statistics
of each member in a group of objects. An example of such an operation
would be calculating an average, where gathering the values is done through
a tree topology overlay network, where averages can be calculated at each
parent of multiple children in the tree. Note that the implementation of
PWR_GrpGetReduce can be done in its more simplistic form by calling PWR_

GrpGetStats and performing the required operation on the returned set of
values to return the requested reduction operation.

int PWR_GrpGetReduce(PWR_Grp group, PWR_AttrName name, PWR_

AttrStat statistic, PWR_AttrStat reduceOp, PWR_TimePeriod

statTime, int* index, double* result, PWR_TimePeriod* resultTime)

80

Arguments Description
IN PWR_Grp group The group to collect the statistic for.

Each object in the group forms the
object, attribute, statistic triple.

IN PWR_AttrName name The attribute to act on, see the PWR_

AttrName type definition in section
4.5.

IN PWR_AttrStat statistic The desired statistic for the specified
attribute, see PWR_AttrStat type def-
inition in section 4.9.

IN PWR_AttrStat reduceOp The reduction operation to perform.
IN PWR_TimePeriod

statTime

Time structure that must contain
the times (start, stop and instant if
appropriate) requested by the user.
Note this is Input only, see page 28.

OUT int* index The index of the object in the sta-
tObj’s associated object group that
provided the reduction result. This
value is only set for reduction oper-
ations where it makes sense, such as
PWR ATTR STAT MIN and PWR
ATTR STAT MAX.

OUT double* result The result of the reduction operation,
which is always a single double value.

OUT PWR_TimePeriod*

resultTime

The time period that the results are
valid for. Note that this may di-
verge from the input time period if re-
sults for the exact time period are not
available. This time period will also
contain the instant that the statis-
tic was observed for cases where this
makes sense, such as PWR ATTR
STAT MIN and PWR ATTR STAT
MAX.

81

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_FAILURE Upon FAILURE.
PWR_RET_WARN_TRUNC When the time window has been trun-

cated by the implementation.

Function Prototype for PWR_StatDestroy()

The PWR_StatDestroy function is used to destroy (clean up) the statistics
pointer created using PWR_ObjCreateStat or PWR_GrpCreateStat.

int PWR_StatDestroy(PWR_Stat statObj)

Arguments Description
IN PWR_Stat statObj The statistics object to destroy (clean

up)

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_FAILURE Upon FAILURE.

5.7 Version Functions

The PWR_GetMajorVersion and PWR_GetMinorVersion functions are used to
get the major and minor portions of the specification version supported by the
implementation. Users can make decisions regarding available functionality
based on the version number supported.

Function Prototype for PWR_GetMajorVersion()

The PWR_GetMajorVersion function is used to get the major version number
portion of the version number of the specification supported by the imple-
mentation.

int PWR_GetMajorVersion()

82

Return Code(s) Description
int Upon SUCCESS, integer representa-

tion of major portion of version num-
ber

PWR_RET_FAILURE Upon FAILURE

Function Prototype for PWR_GetMinorVersion()

The PWR_GetMinorVersion function is used to get the minor version portion
of the version number of the specification supported by the implementation.

int PWR_GetMinorVersion()

Return Code(s) Description
int Upon SUCCESS, integer representa-

tion of minor portion of version num-
ber.

PWR_RET_FAILURE Upon FAILURE.

5.8 Big List of Attributes

The following is the master list of Attributes available to the user. The
attributes valid for specific interfaces are listed in the appropriate section in
Chapter 7.

Table 5.1: Complete list of all supported attributes

Attribute, Get/Set, Type Description

PWR_ATTR_PstateDesc
. Get/Set
. uint64_t

The current P-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CstateDesc
. Get/Set
. uint64_t

The current C-state for the object
specified (typically processors but
for use with other component types
when applicable).

Continued on next page

83

Table 5.1 – continued from previous page

Attribute, Get/Set, Type Description
PWR_ATTR_CstateLimitDesc
. Get/Set
. uint64_t

The lowest C-state allowed for the
object specified (typically processors
but for use with other component
types when applicable).

PWR_ATTR_SstateDesc
. Get/Set
. uint64_t

The current S-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CurrentDesc
. Get
. double

Discrete current value in amps. The
current value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_VoltageDesc
. Get
. double

Discrete voltage value in volts. The
voltage value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_PowerDesc
. Get
. double

Discrete power value in watts. The
power value should be the value mea-
sured as close as possible to the time
of the function call.

PWR_ATTR_MinPowerDesc
. Get/Set
. double

Minimum power limit (floor, lower
bound) for the specified object in
watts.

PWR_ATTR_MaxPowerDesc
. Get/Set
. double

Maximum power limit (ceiling, upper
bound) for the specified object (as in
power cap) in watts.

PWR_ATTR_FreqDesc
. Get/Set
. double

The current operating frequency
value for the specified object in Hz
(cycles per second).

PWR_ATTR_FreqLimitMinDesc
. Get/Set
. double

Minimum operating frequency limit
for the specified object in Hz (cycles
per second).

Continued on next page

84

Table 5.1 – continued from previous page

Attribute, Get/Set, Type Description
PWR_ATTR_FreqLimitMaxDesc
. Get/Set
. double

Maximum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_EnergyDesc
. Get
. double

The cumulative energy used by the
specified object in joules. Note that
two attribute get calls are typically
required to obtain the energy con-
sumed by the specified object. Sub-
tracting the energy value obtained
from the first call from the energy
value obtained from the second call
produces the energy used for the ob-
ject from the timestamp of the first
value through the timestamp of the
second value.

PWR_ATTR_TempDesc
. Get
. double

The current temperature value for
the specified object in degrees Cel-
sius.

PWR_ATTR_OSIdDesc
. Get
. double

The operating system ID that corre-
sponds to the object. For example,
a runtime system may need to figure
out which Power API PWR_OBJ_CORE
objects correspond to the cores that
it is controlling. This attribute pro-
vides a linkage between Power API
objects and operating system IDs.

PWR_ATTR_ThrottledIdDesc
. Get
. double

The cumulative time in nanoseconds
that the specified object’s perfor-
mance was purposefully slowed in or-
der to meet some constraint, such as
a power cap.

Continued on next page

85

Table 5.1 – continued from previous page

Attribute, Get/Set, Type Description
PWR_ATTR_ThrottledCountIdDesc
. Get
. double

The cumulative count of the num-
ber of times that the specified ob-
ject’s performance was purposefully
slowed in order to meet some con-
straint, such as a power cap.

PWR_ATTR_GovDesc
. Get
. double

Power related governor capability ex-
posed through the operating system
interface.

5.9 Big List of Metadata

Table 5.2: Complete List of All Metadata Names

Attribute, Get/Set, Type Description

PWR_MD_num
. Get
. uint64_t

Number of values supported. This
is only relevant for attributes with
a discrete set of values (e.g., PWR_

ATTR_PSTATE). Other attributes re-
turn 0.

PWR_MD_min
. Get
. Same type as attribute

Minimum value supported.

PWR_MD_max
. Get
. Same type as attribute

Maximum value supported.

PWR_MD_precision
. Get
. uint64_t

Number of significant digits in val-
ues.

PWR_MD_precision
. Get
. double

Estimated percent error +/- of mea-
sured vs. actual values.

Continued on next page

86

Table 5.2 – continued from previous page

Attribute, Get/Set, Type Description
PWR_MD_update_rate
. Get/Set
. double

Rate values become visible to user,
in updates per second. Getting or
setting a value at a rate higher than
this is not useful.

PWR_MD_sample_rate
. Get/Set
. double

Rate of underlying sampling, in sam-
ples per second. This is only rel-
evant for values derived over time
(e.g., PWR_ATTR_ENERGY).

PWR_MD_time_window

. Get/Set

. PWR_Time

The time window used to calculate
the value returned or relevant to an
attribute. For example, the “instan-
taneous” PWR_ATTR_POWER values re-
ported may actually be averaged over
a short time window. Power caps are
also enforced with respect to a target
time window.

PWR_MD_ts_latency

. Get

. PWR_Time

Estimate of the time required to get
or set an attribute. This is useful
to estimate completion time for an
operation a priori. A value of zero
should be returned when the get/set
is instantaneous.

PWR_MD_ts_accuracy

. Get

. PWR_Time

Estimated accuracy of returned
timestamps, represented as +/- the
PWR_Time value returned.

PWR_MD_max_len
. Get
. uint64_t

The maximum string length that will
be returned by the metadata inter-
face. All other string lengths (meta-
data items ending in _LEN) will be
less than or equal to this value. The
value of PWR_MD_MAX_LEN will be less
than or equal to PWR_MAX_STRING_

LEN.

Continued on next page

87

Table 5.2 – continued from previous page

Attribute, Get/Set, Type Description
PWR_MD_name_len
. Get
. uint64_t

Length of the attribute name string,
in bytes. This is the buffer length
needed to store the string returned
when PWR_MD_NAME is requested.

PWR_MD_name
. Get
. uint64_t

Attribute name string. This is
a C-style NULL-terminated ASCII
string. This provides a human read-
able name for the attribute. The
string length is given by PWR_MD_

NAME_LEN.
PWR_MD_desc_len
. Get
. uint64_t

Length of the attribute description
string, in bytes. This is the buffer
length needed to store the string
returned when PWR_MD_DESC is re-
quested.

PWR_MD_desc

. Get

. char *

Attribute description string. This
is a C-style NULL-terminated ASCII
string. This provides a human read-
able description of the attribute that
is more descriptive than the at-
tribute’s name alone. The string
length is given by PWR_MD_DESC_LEN.

PWR_MD_value_len
. Get
. uint64_t

Maximum length of the value
strings returned by PWR_

MetaValueAtIndex. This can
be used to discover the buffer
size that needs to be passed to
PWR_MetaValueAtIndex via the
value_str argument.

Continued on next page

88

Table 5.2 – continued from previous page

Attribute, Get/Set, Type Description
PWR_MD_vendor_info_len
. Get
. uint64_t

Length of the vendor information
string, in bytes. This is the buffer
length needed to store the string re-
turned when PWR_MD_VENDOR_INFO is
requested.

PWR_MD_vendor_info

. Get

. char *

Vendor provided information string.
This is a C-style NULL-terminated
ASCII string. This may be used to
convey part numbers, configuration,
or other non-standard information.
The string length is given by PWR_

MD_VENDOR_INFO_LEN.
PWR_MD_measure_method

. Get

. char *

Denotes the measurement method:
an actual measurement (returned
value = 0) or a model based estimate
(return value = 1). Other values > 1
may be used to denote multiple ven-
dor specific models in the situation
where multiple models may exist.

89

Chapter 6

High-Level (Common)
Functions

This chapter includes specifications for High-Level functions that are com-
mon for more than one of the Role/System pair interfaces specified in chapter
7. The implementation may choose to selectively provide implementations
for these functions, but all should be stubbed out or available. If an imple-
mentation is not provided the function should simply return PWR_RET_NOT_

IMPLEMENTED.

6.1 Report Functions

Report functions are intended to provide a number of Role/System pairs with
the ability to produce a range of reports. These particular functions target
historic data, typically data that has been recorded in logs or some type of
database. These functions are considered High-Level and abstract the object
and group concepts found in the Core functions. Information is requested
based on higher level concepts such as job, application or user ID. These
functions require the user to provide a context which is used for determining
whether the calling user can access the requested data.

Function Prototype for PWR_GetReportByID()

The PWR_GetReportByID function is provided to allow the collection of statis-
tics information based on the ID types defined in PWR_ID in Section 4.9. A
PWR_ID type must be supplied with char* pointer pointing to a valid ID for

90

the specified type. The PWR_AttrName, PWR_AttrStat pair determines the
statistic that will be reported. For example, the user of this function might
desire the maximum power used over a period of time one week prior to the
current time. The user would specify the id, id_type, PWR_ATTR_POWER for
the attribute and PWR_STAT_MAX for the statistic and populate the start and
stop members of the PWR_TimePeriod structure appropriately. The times
specified must be prior to the time when the function is called. The func-
tion returns the actual start and stop times if they differ from the times
the user inputs. The implementation should return the time available time
period that most closely matches the requested time period. The implemen-
tation determines the supported attribute combinations. The context of the
calling user will determine if the user has the necessary privilege to access
this information. This functionality assumes the system has a data retention
capability exposed to the user.

int PWR_GetReportByID(PWR_Cntxt context, const char* id, PWR_ID

id_type, PWR_AttrName name, PWR_AttrStat stat, double* value,

PWR_TimePeriod* ReportTimes)

Arguments Description
IN PWR_Cntxt context The calling user’s context which can

be used to determine data access for
individual role/user combinations.

IN const char* id The ID that the statistic will be col-
lected for.

IN PWR_ID id_type The type of ID used to interpret the
ID input.

IN PWR_AttrName name The name of the attribute the statis-
tic will be based on.

IN PWR_AttrStat stat The desired statistic.
OUT double* value Pointer to a double that will contain

the statistic.
IN/OUT PWR_TimePeriod*

ReportTimes

The user specified window for the re-
port (start and stop times must be
specified).

91

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE (Function is imple-

mented but call failed)
PWR_RET_NOT_IMPLEMENTED Indicates that the combination of the

attribute statistic pair and ID is not
supported by this implementation.

92

Chapter 7

Role/System Interfaces

This chapter includes the specifications for all of the Role/System pair inter-
faces depicted in figure 2.1 on page 11. Each interface section first outlines
the purpose the interface serves. Core functionality for each interface is
exposed through the attribute functions (see section 5.4). Each interface sec-
tion includes a table of the supported attributes for that interface. The table
contains the suggested attributes that the implementation should support
for each interface. The implementation can choose to implement additional,
some subset, or none of the attributes listed for that interface. As previ-
ously mentioned, the implementation must implement all attribute functions
whether individual attributes are supported or not. If a particular attribute
is not supported for that interface the implementation should return PWR_

RET_NOT_IMPLEMENTED.
In addition to the attribute functions, other Core (Common) functions

are included in this specification. Each individual interface section will enu-
merate the Core (Common) functions that the specification suggests are ap-
plicable for that interface (see chapter 5 for details regarding Core (Common)
functions). Again, the implementation must implement these functions but
may choose not to support them for a particular interface.

Each section also includes the High-Level (Common) functions that are
applicable to that section (see chapter 6 for details regarding High-Level
(Common) functions). These functions are functions that are applicable to
more than one Role/System pair interface.

Finally, individual interface sections may also contain interface specific
functions. These are functions that, at the time of their addition to the spec-
ification, are specific to one Role/System pair. This does not indicate that

93

the function cannot be supported by an implementation for other Role/Sys-
tem pairs, only that the authors did not recognize a use for other interfaces
at the time of addition to the specification.

7.1 Operating System, Hardware Interface

The Operating system/Hardware Interface is intended to be a low level in-
terface that exposes power and energy relevant architecture features of the
underlying hardware, such as the ability to measure and control power and
energy characteristics of underlying components. In some cases this informa-
tion will be abstracted for presentation to the application through the Appli-
cation/Operating System API interface (section 7.3) or the resource manager
through the Resource Manager/Operating System API (section 7.5). While
we have chosen the term Operating system as part of this interface name,
we are not strictly implying that all interfaces described in this section should
be limited to the domain of the operating system. Additionally, we are not
implying that this interface requires specific privileges, although many low
level operations require elevated privileges. Portions of the system software
stack, like a runtime system, may use many of the interfaces described in
this section.

7.1.1 Supported Attributes

A significant amount of functionality for this interface is exposed through the
attribute functions (section 5.4). The attribute functions in conjunction with
the following attributes (Table 7.1) expose numerous measurement (get) and
control (set) capabilities to the operating system.

Table 7.1: Operating System, Hardware - Supported Attributes

Attribute, Get/Set, Type Description

PWR_ATTR_PstateDesc
. Get/Set
. uint64_t

The current P-state for the object
specified (typically processors but
for use with other component types
when applicable).

Continued on next page

94

Table 7.1 – continued from previous page

Attribute, Get/Set, Type Description
PWR_ATTR_CstateDesc
. Get/Set
. uint64_t

The current C-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CstateLimitDesc
. Get/Set
. uint64_t

The lowest C-state allowed for the
object specified (typically processors
but for use with other component
types when applicable).

PWR_ATTR_SstateDesc
. Get/Set
. uint64_t

The current S-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CurrentDesc
. Get
. double

Discrete current value in amps. The
current value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_VoltageDesc
. Get
. double

Discrete voltage value in volts. The
voltage value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_PowerDesc
. Get
. double

Discrete power value in watts. The
power value should be the value mea-
sured as close as possible to the time
of the function call.

PWR_ATTR_MinPowerDesc
. Get/Set
. double

Minimum power limit (floor, lower
bound) for the specified object in
watts.

PWR_ATTR_MaxPowerDesc
. Get/Set
. double

Maximum power limit (ceiling, upper
bound) for the specified object (as in
power cap) in watts.

PWR_ATTR_FreqDesc
. Get/Set
. double

The current operating frequency
value for the specified object in Hz
(cycles per second).

Continued on next page

95

Table 7.1 – continued from previous page

Attribute, Get/Set, Type Description
PWR_ATTR_FreqLimitMinDesc
. Get/Set
. double

Minimum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_FreqLimitMaxDesc
. Get/Set
. double

Maximum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_EnergyDesc
. Get
. double

The cumulative energy used by the
specified object in joules. Note that
two attribute get calls are typically
required to obtain the energy con-
sumed by the specified object. Sub-
tracting the energy value obtained
from the first call from the energy
value obtained from the second call
produces the energy used for the ob-
ject from the timestamp of the first
value through the timestamp of the
second value.

PWR_ATTR_TempDesc
. Get
. double

The current temperature value for
the specified object in degrees Cel-
sius.

PWR_ATTR_ThrottledIdDesc
. Get
. double

The cumulative time in nanoseconds
that the specified object’s perfor-
mance was purposefully slowed in or-
der to meet some constraint, such as
a power cap.

PWR_ATTR_ThrottledCountIdDesc
. Get
. double

The cumulative count of the num-
ber of times that the specified ob-
ject’s performance was purposefully
slowed in order to meet some con-
straint, such as a power cap.

Continued on next page

96

Table 7.1 – continued from previous page

Attribute, Get/Set, Type Description
PWR_ATTR_OSIdDesc
. Get
. double

The operating system ID that corre-
sponds to the object. For example,
a runtime system may need to figure
out which Power API PWR_OBJ_CORE
objects correspond to the cores that
it is controlling. This attribute pro-
vides a linkage between Power API
objects and operating system IDs.

PWR_ATTR_GovDesc
. Get
. double

Power related governor capability ex-
posed through the operating system
interface.

7.1.2 Supported Core (Common) Functions

• Hierarchy Navigation Functions - section 5.2
– ALL

• Group Functions - section 5.3
– ALL

• Attribute Functions - section 5.4
– ALL

• Metadata Functions - section 5.5
– ALL

• Statistics Functions - section 5.6
– ALL - for real time queries only

7.1.3 Supported High-Level (Common) Functions

7.1.4 Interface Specific Functions

Function Prototype for PWR_StateTransitDelay()

The PWR_StateTransitDelay function returns the expected latency to tran-
sition between two valid states in nanoseconds. It is up to the vendor to
provide accurate estimates for hardware. For example, P-state transitions
could be given a single latency, even though some transitions might take less
time (e.g., high voltage to lower voltage versus low to high). The desired

97

state must be expressed using a PWR_OperState structure described in sec-
tion 4.10 on page 29. This transition time may be a worst case latency time,
and may be supplied by the hardware manufacturer (through the BIOS or
other reporting mechanism). It is expected that this delay is an estimate of
the time required to transition between states, not an estimate of the time
that the core is unavailable for use (which may be a shorter interval than the
time for the changes to take effect).

int PWR_StateTransitDelay(PWR_Ob obj, PWR_OperState start_state,

PWR_OperState end_state, PWR_Time *latency)

Arguments Description
IN PWR_Ob obj The object that the state transition

would be applied to.
IN PWR_OperState start_

state

The state at the beginning of the
transition.

IN PWR_OperState end_

state

The state at the end of the transition.

OUT PWR_Time *latency Pointer to a double that will contain
the transition latency in nanoseconds
upon return.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_FAILURE Upon FAILURE.

98

7.2 Monitor and Control, Hardware Interface

The Monitor and Control/Hardware interface is targeted to support a criti-
cal function on HPC platforms (systems monitoring and management) often
embodied in Reliability Availability and Serviceability (RAS) systems. RAS
systems must evolve to measure and control power and energy relevant as-
pects of the system and serve this information and capability to administra-
tors (Administrator/Monitor and Control Interface - section 7.7), resource
managers (Resource Manager/Monitor and Control Interface - section 7.6),
accounting (Accounting/Monitor and Control Interface - section 7.9) and
users (User/Monitor and Control Interface - section 7.10). The Monitor and
Control Interface serves more other roles than any other system in this spec-
ification. The base level functionality that is exposed through this interface
is very similar to the Operating System/Hardware Interface (section 7.1) but
the functional responsibilities of the role differ considerably. Some of the
interfaces described in this specification imply data retention, or database,
functionality. The monitor and control software (RAS system) is a prime
candidate to serve this purpose. Low level power and energy data can be
mined through the interfaces documented in this section and stored in raw
or processed form in a database and made available for historic queries by
other roles.

7.2.1 Supported Attributes

As in the Operating System/Hardware interface (section 7.1) a significant
amount of functionality for this interface is exposed through the attribute
functions (section 5.4). The attribute functions in conjunction with the fol-
lowing attributes (Table 7.2) expose numerous measurement (get) and control
(set) capabilities to the monitor and control system.

Table 7.2: Monitor and Control, Hardware - Supported Attributes

Attribute, Get/Set, Type Description

PWR_ATTR_PstateDesc
. Get/Set
. uint64_t

The current P-state for the object
specified (typically processors but
for use with other component types
when applicable).

Continued on next page

99

Table 7.2 – continued from previous page

Attribute, Get/Set, Type Description
PWR_ATTR_CstateDesc
. Get/Set
. uint64_t

The current C-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CstateLimitDesc
. Get/Set
. uint64_t

The lowest C-state allowed for the
object specified (typically processors
but for use with other component
types when applicable).

PWR_ATTR_SstateDesc
. Get/Set
. uint64_t

The current S-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CurrentDesc
. Get
. double

Discrete current value in amps. The
current value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_VoltageDesc
. Get
. double

Discrete voltage value in volts. The
voltage value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_PowerDesc
. Get
. double

Discrete power value in watts. The
power value should be the value mea-
sured as close as possible to the time
of the function call.

PWR_ATTR_MinPowerDesc
. Get/Set
. double

Minimum power limit (floor, lower
bound) for the specified object in
watts.

PWR_ATTR_MaxPowerDesc
. Get/Set
. double

Maximum power limit (ceiling, upper
bound) for the specified object (as in
power cap) in watts.

PWR_ATTR_FreqDesc
. Get/Set
. double

The current operating frequency
value for the specified object in Hz
(cycles per second).

Continued on next page

100

Table 7.2 – continued from previous page

Attribute, Get/Set, Type Description
PWR_ATTR_FreqLimitMinDesc
. Get/Set
. double

Minimum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_FreqLimitMaxDesc
. Get/Set
. double

Maximum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_EnergyDesc
. Get
. double

The cumulative energy used by the
specified object in joules. Note that
two attribute get calls are typically
required to obtain the energy con-
sumed by the specified object. Sub-
tracting the energy value obtained
from the first call from the energy
value obtained from the second call
produces the energy used for the ob-
ject from the timestamp of the first
value through the timestamp of the
second value.

PWR_ATTR_TempDesc
. Get
. double

The current temperature value for
the specified object in degrees Cel-
sius.

7.2.2 Supported Core (Common) Functions

• Hierarchy Navigation Functions - section 5.2
– ALL

• Group Functions - section 5.3
– ALL

• Attribute Functions - section 5.4
– ALL

• Metadata Functions - section 5.5
– ALL

• Statistics Functions - section 5.6
– ALL

101

7.2.3 Supported High-Level (Common) Functions

7.2.4 Interface Specific Functions

102

7.3 Application, Operating System Interface

The Application/Operating System Interface is intended to expose the ap-
propriate level of information (measurement) and control to the application
user or application library. This interface may also provide functionality
appropriate for other levels of system software, such as a runtime system.
The capabilities included in this interface concentrate on providing abstrac-
tions that allow an application or library to provide information that can be
used to make intelligent decisions regarding performance, power and energy
efficiency.

An important aspect of this interface is accommodating portable appli-
cation (or library) code. Generalized concepts such as performance and sleep
states that hardware can operate in are used rather than architecture spe-
cific concepts such as hardware P-States. The operating system, or privileged
layer, is responsible for appropriately translating the abstracted information
provided by the application layer into the hardware specific details necessary
for accomplishing the desired functionality (or not). In essence the operating
system, or privileged layer, acts as the hardware translator for the applica-
tion.

7.3.1 Supported Attributes

A significant amount of functionality for this interface is exposed through
the attribute functions (section 5.4). The attributes functions in conjunc-
tion with the following attributes (Table 7.3) expose numerous measurement
and control capabilities to the application, application libraries or possibly
portions of runtime systems.

Table 7.3: Application, Operating System - Supported Attributes

Attribute, Get/Set, Type Description

PWR_ATTR_PowerDesc
. Get
. double

Discrete power value in watts. The
power value should be the value mea-
sured as close as possible to the time
of the function call.

PWR_ATTR_MinPowerDesc
. Get/Set
. double

Minimum power limit (floor, lower
bound) for the specified object in
watts.

Continued on next page

103

Table 7.3 – continued from previous page

Attribute, Get/Set, Type Description
PWR_ATTR_MaxPowerDesc
. Get/Set
. double

Maximum power limit (ceiling, upper
bound) for the specified object (as in
power cap) in watts.

PWR_ATTR_FreqDesc
. Get/Set
. double

The current operating frequency
value for the specified object in Hz
(cycles per second).

PWR_ATTR_FreqLimitMinDesc
. Get/Set
. double

Minimum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_FreqLimitMaxDesc
. Get/Set
. double

Maximum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_EnergyDesc
. Get
. double

The cumulative energy used by the
specified object in joules. Note that
two attribute get calls are typically
required to obtain the energy con-
sumed by the specified object. Sub-
tracting the energy value obtained
from the first call from the energy
value obtained from the second call
produces the energy used for the ob-
ject from the timestamp of the first
value through the timestamp of the
second value.

PWR_ATTR_TempDesc
. Get
. double

The current temperature value for
the specified object in degrees Cel-
sius.

Continued on next page

104

Table 7.3 – continued from previous page

Attribute, Get/Set, Type Description
PWR_ATTR_OSIdDesc
. Get
. double

The operating system ID that corre-
sponds to the object. For example,
a runtime system may need to figure
out which Power API PWR_OBJ_CORE
objects correspond to the cores that
it is controlling. This attribute pro-
vides a linkage between Power API
objects and operating system IDs.

PWR_ATTR_GovDesc
. Get
. double

Power related governor capability ex-
posed through the operating system
interface.

7.3.2 Supported Core (Common) Functions

• Hierarchy Navigation Functions - section 5.2
– ALL

• Group Functions - section 5.3
– ALL

• Attribute Functions - section 5.4
– ALL

• Metadata Functions - section 5.5
– ALL

• Statistics Functions - section 5.6
– ALL - for real time queries only

7.3.3 Supported High-Level (Common) Functions

Function Prototype for PWR_AppHintCreate()

The PWR_AppHint* functions are intended to be used by an application, or
application library, to supply power relevant hints to the operating system
(or a runtime layer). This function creates a tuning hint region-context that
can be re-used, and indicates to the OS/runtime that information gathered
from previous executions of this particular region can be used to determine
effective strategies to improve power/performance efficiency on future runs.
The PWR_RegionHint hints are intended to be used by the application layer

105

to indicate that it is entering a SERIAL, PARALLEL, COMPUTE (computation
intensive) or COMMUNICATE, I/O or MEM_BOUND (communication intensive,
I/O intensive or memory bound) region. The DEFAULT hint types are used
for defining regions that may be significant, but the type of region is un-
known. The GLOBAL_LOOP hint type helps to denote the main computational
loop for an application, which allows some runtimes to optimize machine
power/performance balance. PWR_RegionHint type is described in section
4.11 on page 30. It is intended that these hints may be leveraged to provide
some performance or power benefit, for example, a hint may indicate that an
intensely parallel region is about to happen, this may motivate the proactive
migration of tasks to an accelerator or preemptively speed up cooling fans to
proactively deal with the thermal load. PWR_RegionIntensity, described in
section 4.11 on page 31 can be used for finer-grained hints than are possible
with PWR_RegionHint. It is intended to allow for more explicit hints as to
the intensity of the described region behavior. For example, it can be used
to describe the intensity of a memory bound region, which can be utilized by
the runtime or operating system in deciding what resources to allocate for a
given power budget. PWR_RegionIntensity values are useful for all regions
except for GLOBAL_LOOP regions. It is expected that the implementation will
use these hints whenever possible to increase application performance while
honoring energy/power targets or increase energy efficiency without incur-
ring significant performance penalties. PWR_RegionIntensity may be set to
PWR_REGION_INT_NONE if it is desirable for the operating system or a run-
time to determine the intensity of resource usage dependent on the given
hint. PWR_REGION_INT_NONE can also be used when the intensity of the de-
scribed behavior is not known. This parameter may be ignored by the OS.
The hint_region_name is used to name a region and assign a ID number to
that region. All hint_region_name values used must be unique. If a name
is not specified (name input parameter is NULL), then the implementation
will assign a unique name to the region. This will create and return a region
ID that can be used in calls to PWR_AppHintStart to indicate the region
that is being entered. This should be accompanied by a PWR_RegionHint

type as described in section 4.11 on page 30 and a PWR_RegionIntensity as
described in section 4.11 on page 31. All calls to PWR_AppHintCreate should
be matched to a call to PWR_AppHintDestroy (7.3.3). Rationale: Giving hint
regions human readable names facilitates easier display and debugging of in-
formation associated with the region, allowing for performance reports to be
generated from the OS/runtime for regions of interest. /End Rationale.

106

int PWR_AppHintCreate(PWR_Obj obj, const char *name, uint64_t

*region_id, PWR_RegionHint hint)

Arguments Description
IN PWR_Obj obj The object that the hint applies to.
IN const char *name A name for the region of code to re-

ceive the hint.
IN/OUT uint64_t *region_id A region identifier created from the

region name that can be used in sub-
sequent hint calls.

IN PWR_RegionHint hint The hint corresponding to the code
(behavioral) region being entered.

Return Code(s) Description
PWR_ERR_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE
PWR_RET_NOT_IMPLEMENTED Object does not support the requested

operation

Function Prototype for PWR_AppHintDestroy()

This function destroys a tuning hint region that was created with the PWR_

AppHintCreate call. For more information on the use of application tuning
hints in regions, see 7.3.3. All calls to PWR_AppHintCreate should be matched
to a call to PWR_AppHintDestroy (7.3.3).

int PWR_AppHintDestroy(uint64_t region_id)

Arguments Description
IN uint64_t region_id The region identifier of the region to

be destroyed.

Return Code(s) Description
PWR_ERR_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE
PWR_RET_NOT_IMPLEMENTED Object does not support the requested

operation

107

Function Prototype for PWR_AppHintStart()

The PWR_AppHint* functions are intended to be used by an application, or ap-
plication library, to supply power relevant hints to the operating system (or a
runtime layer). It is intentional that many of these hints do not directly imply
that a power or energy adjustment will be made. hint_region_id values are
used to indicate the region ID number supplied from the PWR_AppHintCreate
function. A given region can only be started one, and requires a matched call
to PWR_AppHintStop(). Subsequent calls to PWR_AppHintStart for a given
region ID that has already been started without being stopped are ignored.
Tuning hints for multiple regions may be nested, but the OS/runtime is not
required to support more than a single region at a time. Therefore nested
hints calls result in using the most recently started region and hint. When
nested regions are stopped, the parent region’s hint is re-applied. Consult
your implementation documentation to determine if blending of nested hints
are supported (multiple hint regions being applied simultaneously).

int PWR_AppHintStart(uint64_t hint_region_id)

Arguments Description
IN uint64_t hint_region_

id

A region identifier of the region being
entered.

Return Code(s) Description
PWR_ERR_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE
PWR_RET_NOT_IMPLEMENTED Object does not support the requested

operation

Function Prototype for PWR_AppHintStop()

The PWR_AppHint* functions is intended to be used by an application, or
application library, to supply power relevant hints to the operating system
(or a runtime layer). This function delineates the termination of a tuning
hint region that was started with the PWR_AppHintStart call.

int PWR_AppHintStop(uint64_t region_id)

108

Arguments Description
IN uint64_t region_id The region identifier of the region

that is to be stopped.

Return Code(s) Description
PWR_ERR_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE
PWR_RET_NOT_IMPLEMENTED Object does not support the requested

operation

Function Prototype for PWR_AppHintProgress()

The PWR_AppHintProgress function is intended to be used by an applica-
tion, or application library, to indicate progress within a hint region. This
can be used by underlying OS/runtimes to determine if adjustments made
to the system based on the hint information are appropriate and facilitate
further tuning. While use of this function is not required in order to use hints
for code regions its use in encouraged as it may provide increased efficien-
cy/performance from the OS/runtime. This function call may be ignored by
the OS or runtime if they do not support hint region tuning.

int PWR_AppHintProgress(uint64_t region_id, double progress_

fraction)

Arguments Description
IN uint64_t region_id A region identifier corresponding to

the region making progress.
IN double progress_

fraction

A value representing what frac-
tion of the region/computation is
complete as of this call to PWR_

AppHintProgress.

Return Code(s) Description
PWR_ERR_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE
PWR_RET_NOT_IMPLEMENTED Object does not support the requested

operation

109

Function Prototype for PWR_SetSleepStateLimit()

PWR_SetSleepStateLimit allows the application to request that, when pos-
sible, the OS restrict the deepest sleep state (e.g. C-state) that the hardware
can enter. It is important to note that this function does not place the object
in a sleep state, it only suggests to the Operating System (or privileged layer)
that it limit the deepest possible sleep state that the object can enter. The
operating system or hardware are responsible for determining when hardware
should be put to sleep. This is not required to be honored by the OS or HW,
but serves as a hint to the OS as to the latency that can be tolerated when
transitioning between sleep and active states. As the application cannot typ-
ically control the entry of hardware into sleep states this function is meant
to provide a method for an application to express its latency tolerance in
an environment where resources may be put into sleep states without the
application’s knowledge. Applications calling PWR_SetSleepStateLimit are
expected to make use of the PWR_WakeUpLatency call on page 110 to provide
information needed to determine the desired sleep state level. Sleep states
must conform to the PWR_SleepState type in section 4.11 on page 31.

int PWR_SetSleepStateLimit(PWR_Obj obj, PWR_SleepState state)

Arguments Description
IN PWR_Obj obj The object to set the sleep state on.
IN PWR_SleepState state The sleep state to set as the maxi-

mum deepest sleep allowed.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE
PWR_RET_NOT_IMPLEMENTED Object does not support the requested

operation

Function Prototype for PWR_WakeUpLatency()

The PWR_WakeUpLatency function returns a value in nanoseconds that corre-
sponds to the time required to resume normal operation when transitioning
out of a given sleep state. If the supplied PWR_Obj does not support sleeping

110

or the requested sleep state is not available then the function may return
PWR_RET_FAILURE. Advice to users: This function is useful when determin-
ing what sleep states can be exploited when knowledge of the length of time
that certain operations (most likely remote ones) can be expected to take. Use
of this function is intended to be paired with the SetSleepStateLimit func-
tion. Although users cannot use this function to place hardware into a sleep
state, when used in conjunction with SetSleepStateLimit it can be used to
suggest to an actor placing the hardware in a sleep state which state may be
the most desirable. End of Advice to users.

int PWR_WakeUpLatency(PWR_Obj obj, PWR_SleepState state, PWR_

Time* latency)

Arguments Description
IN PWR_Obj obj The object to query for latency.
IN PWR_SleepState state The sleep state to transition out of.
OUT PWR_Time* latency The latency of the transition in

nanoseconds.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE
PWR_RET_NOT_IMPLEMENTED Object does not support the requested

operation

Function Prototype for PWR_RecommendSleepState()

This is a convenience function for cases in which an application’s maximum
tolerable latency is known for a given region and a deepest possible sleep
state for use with the SetSleepStateLimit function is desired. Calling
RecommendSleepState with the known latency will return the sleep state
that has the closest latency to the desired value without exceeding it. Re-
turned sleep states from this function conform to the PWR_SleepState type
in section 4.11 on page 31.

PWR_RecommendSleepState(PWR_Obj obj, PWR_Time latency, PWR_

SleepState* state)

111

Arguments Description
IN PWR_Obj obj The object to set the sleep state on.
IN PWR_Time latency The amount of latency tolerable to

the application in nanoseconds.
OUT PWR_SleepState* state The deepest sleep state recommended

to be used as a limit.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE
PWR_RET_NOT_IMPLEMENTED Object does not support the requested

operation

Function Prototype for PWR_SetPerfState()

The PWR_SetPerfState function is used to request that an object change
its performance level. The operating system is responsible for translating
the abstracted PWR_PerfState value into an appropriate hardware-specific
performance level (e.g. a CPU P-State). Setting the performance state of
an object is not guaranteed to result in the requested change. The operating
system may choose to ignore it or the hardware may not honor the request.
The user should not expect that once a performance state has been set that
it will not change in the future. Multiple actors may also set the performance
state, including in some cases, remote actors.

int PWR_SetPerfState(PWR_Obj obj, PWR_PerfState state)

Arguments Description
IN PWR_Obj obj The object to set the performance

state on.
IN PWR_PerfState state The performance state to set the ob-

ject to.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE
PWR_RET_NOT_IMPLEMENTED Object does not support the requested

operation

112

Function Prototype for PWR_GetPerfState()

The PWR_GetPerfState function returns the performance state for any given
object. The value that is returned is an abstracted value based on the real
hardware state of the object that is mapped to the closest PWR_PerfState

value. Objects must return PWR_RET_FAILURE if they do not support oper-
ating in different states.

int PWR_GetPerfState(PWR_Obj obj, PWR_PerfState* state)

Arguments Description
IN PWR_Obj obj The object to get the current perfor-

mance state of.
OUT PWR_PerfState* state performance state of the object.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE
PWR_RET_NOT_IMPLEMENTED Object does not support the requested

operation

Function Prototype for PWR_GetSleepState()

The PWR_GetSleepState function returns the current sleep state for any
given object.

int PWR_GetSleepState(PWR_Obj obj, PWR_PerfState* state)

Arguments Description
IN PWR_Obj obj The object to get the current sleep

state of.
OUT PWR_PerfState* state The sleep state of the object.

Return Code(s) Description
PWR_RET_SUCCESS SUCCESS
PWR_RET_FAILURE FAILURE
PWR_RET_NOT_IMPLEMENTED Object does not support the requested

operation.

113

7.4 User, Resource Manager Interface

The User/Resource Manger Interface is intended to support access to power
and energy related information, specifically pertaining to jobs, relevant to an
HPC user. This interface is similar to the User/Monitor and Control Interface
(section 7.10) but in this case assumes that the Resource Manager has a
data retention capability (database) available to query energy and statistics
information based on job or user Id. The availability of this information is
implementation dependent. Alternatively, if the Resource Manager does not
have a database capability, the same interfaces are available to the user role
through the User/Monitor and Control System Interface (section 7.10 which
may provide this functionality.

7.4.1 Supported Attributes

The Power API specification does not currently recommend that any of the
attributes be exposed to the user role. The implementation is free to expose
any attribute they determine is useful to the user role without violating the
specification.

7.4.2 Supported Core (Common) Functions

• Hierarchy Navigation Functions - section 5.2
– ALL

• Group Functions - section 5.3
– ALL

• Metadata Functions - section 5.5
– ALL

• Statistics Functions - section 5.6
– ALL - for historic queries only

7.4.3 Supported High-Level (Common) Functions

• Report Functions - section 6.1
– ALL

7.4.4 Interface Specific Functions

114

7.5 Resource Manager, Operating System In-

terface

The Resource Manager/Operating System Interface is intended to access
both low level and abstracted information from the operating system. Simi-
lar or additional information may be available from the monitor and control
system (section 7.6) depending on the implementation. The resource man-
ager is in a somewhat unique position of providing a range of functionality
depending on the specific implementation. The resource manager role in-
cludes functionality such as batch schedulers and allocators as well as poten-
tial portions of tightly integrated runtime and launch systems. The resource
manager may require fairly low level measurement information to make deci-
sions and potentially store historic information for consumption by the user
role (for example). The resource manager may also play a very large role
in controlling power and energy pertinent functionally on both a applica-
tion and platform basis in response to facility restrictions (power capping or
energy aware scheduling for example).

7.5.1 Supported Attributes

A significant amount of functionality for this interface is exposed through the
attribute functions (section 5.4). The attribute functions in conjunction with
the following attributes (Table 7.4) expose numerous measurement (get) and
control (set) capabilities to the resource manager.

Table 7.4: Resource Manager, Operating System - Supported Attributes

Attribute, Get/Set, Type Description

PWR_ATTR_PstateDesc
. Get/Set
. uint64_t

The current P-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CstateDesc
. Get/Set
. uint64_t

The current C-state for the object
specified (typically processors but
for use with other component types
when applicable).

Continued on next page

115

Table 7.4 – continued from previous page

Attribute, Get/Set, Type Description
PWR_ATTR_CstateLimitDesc
. Get/Set
. uint64_t

The lowest C-state allowed for the
object specified (typically processors
but for use with other component
types when applicable).

PWR_ATTR_SstateDesc
. Get/Set
. uint64_t

The current S-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_PowerDesc
. Get
. double

Discrete power value in watts. The
power value should be the value mea-
sured as close as possible to the time
of the function call.

PWR_ATTR_MinPowerDesc
. Get/Set
. double

Minimum power limit (floor, lower
bound) for the specified object in
watts.

PWR_ATTR_MaxPowerDesc
. Get/Set
. double

Maximum power limit (ceiling, upper
bound) for the specified object (as in
power cap) in watts.

PWR_ATTR_FreqDesc
. Get/Set
. double

The current operating frequency
value for the specified object in Hz
(cycles per second).

PWR_ATTR_FreqLimitMinDesc
. Get/Set
. double

Minimum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_FreqLimitMaxDesc
. Get/Set
. double

Maximum operating frequency limit
for the specified object in Hz (cycles
per second).

Continued on next page

116

Table 7.4 – continued from previous page

Attribute, Get/Set, Type Description
PWR_ATTR_EnergyDesc
. Get
. double

The cumulative energy used by the
specified object in joules. Note that
two attribute get calls are typically
required to obtain the energy con-
sumed by the specified object. Sub-
tracting the energy value obtained
from the first call from the energy
value obtained from the second call
produces the energy used for the ob-
ject from the timestamp of the first
value through the timestamp of the
second value.

PWR_ATTR_TempDesc
. Get
. double

The current temperature value for
the specified object in degrees Cel-
sius.

7.5.2 Supported Core (Common) Functions

• Hierarchy Navigation Functions - section 5.2
– ALL

• Group Functions - section 5.3
– ALL

• Attribute Functions - section 5.4
– ALL

• Metadata Functions - section 5.5
– ALL

• Statistics Functions - section 5.6
– ALL

7.5.3 Supported High-Level (Common) Functions

7.5.4 Interface Specific Functions

117

7.6 Resource Manager, Monitor and Control

Interface

The Resource Manager/Monitor and Control Interface is intended to access
both low level and abstracted information from the monitor and control sys-
tem (if available), much like the Resource Manager/Operating System Inter-
face (section 7.5). The resource manager is in a somewhat unique position of
providing a range of functionality depending on the specific implementation.
The resource manager role includes functionality such as batch schedulers
and allocators as well as potential portions of tightly integrated runtime and
launch systems. The resource manager may require fairly low level measure-
ment information to make decisions and potentially store historic information
for consumption by the user role (for example). In contrast to the Resource
Manager/Operating System Interface (section 7.5) this interface includes the
capability to mine information from the Monitor and Control system in situ-
ations where the Resource Manager does not retain historic data itself. The
resource manager may also play a very large role in controlling power and
energy pertinent functionally on both a application and platform basis in
response to facility restrictions (power capping or energy aware scheduling
for example).

7.6.1 Supported Attributes

A significant amount of functionality for this interface is exposed through the
attribute functions (section 5.4). The attribute functions in conjunction with
the following attributes (Table 7.5) expose numerous measurement (get) and
control (set) capabilities to the resource manager.

Table 7.5: Resource Manager, Monitor and Control - Supported Attributes

Attribute, Get/Set, Type Description

PWR_ATTR_PstateDesc
. Get/Set
. uint64_t

The current P-state for the object
specified (typically processors but
for use with other component types
when applicable).

Continued on next page

118

Table 7.5 – continued from previous page

Attribute, Get/Set, Type Description
PWR_ATTR_CstateDesc
. Get/Set
. uint64_t

The current C-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CstateLimitDesc
. Get/Set
. uint64_t

The lowest C-state allowed for the
object specified (typically processors
but for use with other component
types when applicable).

PWR_ATTR_SstateDesc
. Get/Set
. uint64_t

The current S-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_PowerDesc
. Get
. double

Discrete power value in watts. The
power value should be the value mea-
sured as close as possible to the time
of the function call.

PWR_ATTR_MinPowerDesc
. Get/Set
. double

Minimum power limit (floor, lower
bound) for the specified object in
watts.

PWR_ATTR_MaxPowerDesc
. Get/Set
. double

Maximum power limit (ceiling, upper
bound) for the specified object (as in
power cap) in watts.

PWR_ATTR_FreqDesc
. Get/Set
. double

The current operating frequency
value for the specified object in Hz
(cycles per second).

PWR_ATTR_FreqLimitMinDesc
. Get/Set
. double

Minimum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_FreqLimitMaxDesc
. Get/Set
. double

Maximum operating frequency limit
for the specified object in Hz (cycles
per second).

Continued on next page

119

Table 7.5 – continued from previous page

Attribute, Get/Set, Type Description
PWR_ATTR_EnergyDesc
. Get
. double

The cumulative energy used by the
specified object in joules. Note that
two attribute get calls are typically
required to obtain the energy con-
sumed by the specified object. Sub-
tracting the energy value obtained
from the first call from the energy
value obtained from the second call
produces the energy used for the ob-
ject from the timestamp of the first
value through the timestamp of the
second value.

PWR_ATTR_TempDesc
. Get
. double

The current temperature value for
the specified object in degrees Cel-
sius.

7.6.2 Supported Core (Common) Functions

• Hierarchy Navigation Functions - section 5.2
– ALL

• Group Functions - section 5.3
– ALL

• Attribute Functions - section 5.4
– ALL

• Metadata Functions - section 5.5
– ALL

• Statistics Functions - section 5.6
– ALL

7.6.3 Supported High-Level (Common) Functions

• Report Functions - section 6.1
– ALL

7.6.4 Interface Specific Functions

120

7.7 Administrator, Monitor and Control In-

terface

The Administrator/Monitor and Control Interface is intended to expose ad-
ministrator level measurement and control capabilities to the administrator
role for the HPC platform. This interface assumes that the administrator
role has elevated privileges. Additionally, the administrator is assumed to
have access to all user role functionality documented in sections 7.10 and 7.4.
A full complement of access to low level information is exposed through the
attribute interface and other core level functions.

7.7.1 Supported Attributes

A significant amount of functionality for this interface is exposed through the
attribute functions (section 5.4). The attribute functions in conjunction with
the following attributes (Table 7.6) expose numerous measurement (get) and
control (set) capabilities to the administrator role.

Table 7.6: Monitor and Control, Hardware - Supported Attributes

Attribute, Get/Set, Type Description

PWR_ATTR_PstateDesc
. Get/Set
. uint64_t

The current P-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CstateDesc
. Get/Set
. uint64_t

The current C-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CstateLimitDesc
. Get/Set
. uint64_t

The lowest C-state allowed for the
object specified (typically processors
but for use with other component
types when applicable).

PWR_ATTR_SstateDesc
. Get/Set
. uint64_t

The current S-state for the object
specified (typically processors but
for use with other component types
when applicable).

Continued on next page

121

Table 7.6 – continued from previous page

Attribute, Get/Set, Type Description
PWR_ATTR_CurrentDesc
. Get
. double

Discrete current value in amps. The
current value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_VoltageDesc
. Get
. double

Discrete voltage value in volts. The
voltage value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_PowerDesc
. Get
. double

Discrete power value in watts. The
power value should be the value mea-
sured as close as possible to the time
of the function call.

PWR_ATTR_MinPowerDesc
. Get/Set
. double

Minimum power limit (floor, lower
bound) for the specified object in
watts.

PWR_ATTR_MaxPowerDesc
. Get/Set
. double

Maximum power limit (ceiling, upper
bound) for the specified object (as in
power cap) in watts.

PWR_ATTR_FreqDesc
. Get/Set
. double

The current operating frequency
value for the specified object in Hz
(cycles per second).

PWR_ATTR_FreqLimitMinDesc
. Get/Set
. double

Minimum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_FreqLimitMaxDesc
. Get/Set
. double

Maximum operating frequency limit
for the specified object in Hz (cycles
per second).

Continued on next page

122

Table 7.6 – continued from previous page

Attribute, Get/Set, Type Description
PWR_ATTR_EnergyDesc
. Get
. double

The cumulative energy used by the
specified object in joules. Note that
two attribute get calls are typically
required to obtain the energy con-
sumed by the specified object. Sub-
tracting the energy value obtained
from the first call from the energy
value obtained from the second call
produces the energy used for the ob-
ject from the timestamp of the first
value through the timestamp of the
second value.

PWR_ATTR_TempDesc
. Get
. double

The current temperature value for
the specified object in degrees Cel-
sius.

7.7.2 Supported Core (Common) Functions

• Hierarchy Navigation Functions - section 5.2
– ALL

• Group Functions - section 5.3
– ALL

• Attribute Functions - section 5.4
– ALL

• Metadata Functions - section 5.5
– ALL

• Statistics Functions - section 5.6
– ALL

7.7.3 Supported High-Level (Common) Functions

• Report Functions - section 6.1
– ALL

7.7.4 Interface Specific Functions

123

7.8 HPCS Manager, Resource Manager In-

terface

The HPCS Manager/Resource Manager Interface is intended to provide the
necessary functionality for the HPCS Manager to implement policy via the
Resource Manager. Policy information such as power caps (minimums or
maximums), per user energy limits and traditional policies like node hours
and priorities will all play a role in energy aware platform scheduling.

7.8.1 Supported Attributes

The Power API specification does not currently recommend that any of the
attributes be exposed to the HPCS Manager role. The implementation is
free to expose any attribute they determine is useful to the user role without
violating the specification.

7.8.2 Supported Core (Common) Functions

7.8.3 Supported High-Level (Common) Functions

7.8.4 Interface Specific Functions

124

7.9 Accounting, Monitor and Control Inter-

face

The Accounting/Monitor and Control Interface is intended to support access
to power and energy related information regarding users, jobs and platform
details to the accounting role. The accounting role differs from the user role in
part by the elevated permissions this role will typically have. The accounting
role includes interfaces to expose both a low-level interface via the attribute
interface and higher level energy and statistics information through interface
specific functions. The availability of historic information, critical to much
of the accounting role, is dependent on the availability of the information in
the Monitor and Control System which is implementation specific.

7.9.1 Supported Attributes

A significant amount of functionality for this interface is exposed through the
attribute functions (section 5.4). The attribute functions in conjunction with
the following attributes (Table 7.7) expose numerous measurement (get) and
control (set) capabilities to the accounting role.

Table 7.7: Accounting, Monitor and Control System - Supported Attributes

Attribute, Get/Set, Type Description

PWR_ATTR_PstateDesc
. Get/Set
. uint64_t

The current P-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CstateDesc
. Get/Set
. uint64_t

The current C-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CstateLimitDesc
. Get/Set
. uint64_t

The lowest C-state allowed for the
object specified (typically processors
but for use with other component
types when applicable).

Continued on next page

125

Table 7.7 – continued from previous page

Attribute, Get/Set, Type Description
PWR_ATTR_SstateDesc
. Get/Set
. uint64_t

The current S-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CurrentDesc
. Get
. double

Discrete current value in amps. The
current value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_VoltageDesc
. Get
. double

Discrete voltage value in volts. The
voltage value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_PowerDesc
. Get
. double

Discrete power value in watts. The
power value should be the value mea-
sured as close as possible to the time
of the function call.

PWR_ATTR_MinPowerDesc
. Get/Set
. double

Minimum power limit (floor, lower
bound) for the specified object in
watts.

PWR_ATTR_MaxPowerDesc
. Get/Set
. double

Maximum power limit (ceiling, upper
bound) for the specified object (as in
power cap) in watts.

PWR_ATTR_FreqDesc
. Get/Set
. double

The current operating frequency
value for the specified object in Hz
(cycles per second).

PWR_ATTR_FreqLimitMinDesc
. Get/Set
. double

Minimum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_FreqLimitMaxDesc
. Get/Set
. double

Maximum operating frequency limit
for the specified object in Hz (cycles
per second).

Continued on next page

126

Table 7.7 – continued from previous page

Attribute, Get/Set, Type Description
PWR_ATTR_EnergyDesc
. Get
. double

The cumulative energy used by the
specified object in joules. Note that
two attribute get calls are typically
required to obtain the energy con-
sumed by the specified object. Sub-
tracting the energy value obtained
from the first call from the energy
value obtained from the second call
produces the energy used for the ob-
ject from the timestamp of the first
value through the timestamp of the
second value.

PWR_ATTR_TempDesc
. Get
. double

The current temperature value for
the specified object in degrees Cel-
sius.

7.9.2 Supported Core (Common) Functions

• Hierarchy Navigation Functions - section 5.2
– ALL

• Group Functions - section 5.3
– ALL

• Attribute Functions - section 5.4
– ALL

• Metadata Functions - section 5.5
– ALL

• Statistics Functions - section 5.6
– ALL

7.9.3 Supported High-Level (Common) Functions

• Report Functions - section 6.1
– ALL

7.9.4 Interface Specific Functions

127

7.10 User, Monitor and Control Interface

The User/Monitor and Control Interface is intended to support access to
power and energy information relevant to an HPC user. This interface is
similar to the User/Resource Manager Interface (section 7.4) but exposes
more low level information to the user through the Monitor and Control sys-
tem, assuming the user has permission to access the information. The low
level information exposed to the user role through this interface is primar-
ily to support fine grained application analysis when available. The ability
to mine energy and other statistics information based on job Id and user
Id, included in this interface, assumes that a data retention capability is
implemented in the Monitor and Control system. This is of course imple-
mentation dependent. Alternatively, if the Monitor and Control system does
not have a database capability, the same interfaces are available to the user
role through the User/Resource Manager Interface (section 7.4 which may
provide this functionality.

7.10.1 Supported Attributes

A significant amount of functionality for this interface is exposed through the
attribute functions (section 5.4). The attribute functions in conjunction with
the following attributes (Table 7.8) expose numerous measurement (get) and
control (set) capabilities to the user role.

Table 7.8: User, Monitor and Control - Supported Attributes

Attribute, Get/Set, Type Description

PWR_ATTR_PstateDesc
. Get/Set
. uint64_t

The current P-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CstateDesc
. Get/Set
. uint64_t

The current C-state for the object
specified (typically processors but
for use with other component types
when applicable).

Continued on next page

128

Table 7.8 – continued from previous page

Attribute, Get/Set, Type Description
PWR_ATTR_SstateDesc
. Get/Set
. uint64_t

The current S-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CurrentDesc
. Get
. double

Discrete current value in amps. The
current value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_VoltageDesc
. Get
. double

Discrete voltage value in volts. The
voltage value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_PowerDesc
. Get
. double

Discrete power value in watts. The
power value should be the value mea-
sured as close as possible to the time
of the function call.

PWR_ATTR_MinPowerDesc
. Get/Set
. double

Minimum power limit (floor, lower
bound) for the specified object in
watts.

PWR_ATTR_MaxPowerDesc
. Get/Set
. double

Maximum power limit (ceiling, upper
bound) for the specified object (as in
power cap) in watts.

PWR_ATTR_FreqDesc
. Get/Set
. double

The current operating frequency
value for the specified object in Hz
(cycles per second).

PWR_ATTR_FreqLimitMinDesc
. Get/Set
. double

Minimum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_FreqLimitMaxDesc
. Get/Set
. double

Maximum operating frequency limit
for the specified object in Hz (cycles
per second).

Continued on next page

129

Table 7.8 – continued from previous page

Attribute, Get/Set, Type Description
PWR_ATTR_EnergyDesc
. Get
. double

The cumulative energy used by the
specified object in joules. Note that
two attribute get calls are typically
required to obtain the energy con-
sumed by the specified object. Sub-
tracting the energy value obtained
from the first call from the energy
value obtained from the second call
produces the energy used for the ob-
ject from the timestamp of the first
value through the timestamp of the
second value.

PWR_ATTR_TempDesc
. Get
. double

The current temperature value for
the specified object in degrees Cel-
sius.

7.10.2 Supported Core (Common) Functions

• Hierarchy Navigation Functions - section 5.2
– ALL

• Group Functions - section 5.3
– ALL

• Attribute Functions - section 5.4
– ALL

• Metadata Functions - section 5.5
– ALL

• Statistics Functions - section 5.6
– ALL

7.10.3 Supported High-Level (Common) Functions

• Report Functions - section 6.1
– ALL

7.10.4 Interface Specific Functions

130

Chapter 8

Conclusion

The case for an HPC-community-adopted power API specification is com-
pelling. The demand for computational cycles continues to increase, as does
the expense to power the cycles. Hardware vendors are providing interfaces
to power data and controls so that software can monitor usage and even con-
trol it. To maximize utilization of these ”knobs”, a portable interface layer
allows multiple software products to code to a generic layer which can be
translated by the individual hardware vendors. With this need in mind, the
Power API defined herein sets out to address the following tenets.

Very wide scope from facility to hardware component This spec-
ification is not just limited to the hardware interfaces. The information from
the hardware is the enabler for this API. However, the information is needed
at many levels, from many different viewpoints. In [10] we identified a dis-
crete set of unique actors (a.k.a. users, which can be software components)
communicating via the API. In turn, these actors have interfaces with one or
more systems within the scope of the API. The actor/system combinations
represent the variety of viewpoints. For example, a batch job scheduler is
more likely concerned about overall system and/or node power information,
not the draw of a specific processor core or memory controller.

Portability for software calling the API By grouping the function
calls by actor/system combination, we attempted to strike a balance between
a totally non-intuitive, but generic get/put interface and one that is overly
prescriptive by focusing on pre-identified and specific software packages. In
addition to the actor/system calls, there is a set of calls to build the system
“diagram” without having to rely on configuration files from a specific system
type.

131

Flexibility for implementer of an API As this is a new area, the spec-
ification provides interfaces that are adaptable as hardware power technology
evolves. The API is not based on any existing software-specific API. We can
envision ways that interfaces such as RAPL, DVFS, NVML, BGQT/EMON,
ACPI, the PAPI power interface, OpenMPI’s hwloc package, etc., etc. can
become implementations for certain actor/system interfaces.

We strived to create a portable, implementable interface for power-aware
computing. We welcome all suggestions and comments.

132

Bibliography

[1] R. Bertran, Y. Sugawara, H. M. Jacobson, A. Buyuktosunoglu, and
P. Bose. Application-level power and performance characterization and
optimization on IBM Blue Gene/Q systems. In IBM Journal of Research
and Development, volume 57, 2013.

[2] Grady Booch, Ivar Jacobson, and James Rumbaugh. The Unified Mod-
eling Language Reference Manual. Addison-Wesley, 1999.

[3] M. Brocanelli, Sen Li, Xiaorui Wang, and Wei Zhang. Joint management
of data centers and electric vehicles for maximized regulation profits. In
Green Computing Conference (IGCC), 2013 International, pages 1–10,
June 2013.

[4] Hao Chen, Can Hankendi, Michael C. Caramanis, and Ayse K. Coskun.
Dynamic Server Power Capping for Enabling Data Center Participation
in Power Markets. In Proceedings of the International Conference on
Computer-Aided Design, ICCAD ’13, pages 122–129, Piscataway, NJ,
USA, 2013. IEEE Press.

[5] Yuan Chen, D. Gmach, C. Hyser, Zhikui Wang, C. Bash, C. Hoover, and
S. Singhal. Integrated management of application performance, power
and cooling in data centers. In Network Operations and Management
Symposium (NOMS), 2010 IEEE, pages 615–622, April 2010.

[6] Yiannis Georgiou. Energy Accounting and Control on HPC clus-
ters, November 2013. http://perso.ens-lyon.fr/laurent.lefevre/
greendayslille/greendayslille_Yiannis_Georgiou.pdf.

[7] Yiannis Georgiou, Thomas Cadeau, David Glesser, Danny Auble, Mor-
ris Jette, and Matthieu Hautreux. Energy Accounting and Control with

133

http://perso.ens-lyon.fr/laurent.lefevre/greendayslille/greendayslille_Yiannis_Georgiou.pdf
http://perso.ens-lyon.fr/laurent.lefevre/greendayslille/greendayslille_Yiannis_Georgiou.pdf

SLURM Resource and Job Management System. In Mainak Chatter-
jee, Jian-Nong Cao, Kishore Kothapalli, and Sergio Rajsbaum, editors,
ICDCN, volume 8314 of Lecture Notes in Computer Science, pages 96–
118. Springer, 2014.

[8] Ryan E Grant, Michael Levenhagen, Stephen L Olivier, David DeBo-
nis, Kevin T Pedretti, and James H Laros III. Standardizing power
monitoring and control at exascale. Computer, 49(10):38–46, 2016.

[9] Ivar Jacobson. Object Oriented Software Engineering: A Use Case
Driven Approach. Addison-Wesley, 1992.

[10] James H Laros, Suzanne M Kelly, Steven Hammond, Ryan Elmore, and
Kristin Munch. Power/Energy Use Cases for High Performance Com-
puting. Internal SAND Report SAND2013-10789. https://cfwebprod.
sandia.gov/cfdocs/CompResearch/docs/UseCase-powapi.pdf.

[11] Zhenhua Liu, Yuan Chen, Cullen Bash, Adam Wierman, Daniel Gmach,
Zhikui Wang, Manish Marwah, and Chris Hyser. Renewable and Cooling
Aware Workload Management for Sustainable Data Centers. SIGMET-
RICS Perform. Eval. Rev., 40(1):175–186, June 2012.

[12] Bryan Mills, Ryan E. Grant, Kurt B. Ferreira, and Rolf Riesen. Evalu-
ating Energy Savings for Checkpoint/Restart. In Proceedings of the 1st
International Workshop on Energy Efficient Supercomputing, E2SC ’13,
pages 6:1–6:8, New York, NY, USA, 2013. ACM.

[13] D.K. Newsom, S.F. Azari, A. Anbar, and T. El-Ghazawi. Locality-aware
power optimization and measurement methodology for PGAS workloads
on SMP clusters. In Green Computing Conference (IGCC), 2013 Inter-
national, pages 1–10, June 2013.

[14] J.U. Patel, S.J. Guercio, A.E. Bruno, M.D. Jones, and T.R. Furlani.
Implementing green technologies and practices in a high performance
computing center. In Green Computing Conference (IGCC), 2013 In-
ternational, pages 1–8, June 2013.

[15] P.V. Ramakrishna, G. Kaushik, K.L. Sudhakar, G. Thiagarajan, and
A. Sivasubramaniam. Online system for energy assessment in large facil-
ities - Methodology amp; A real-world case study. In Green Computing
Conference (IGCC), 2013 International, pages 1–9, June 2013.

134

https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/UseCase-powapi.pdf
https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/UseCase-powapi.pdf

[16] Geri Schneider and Jason Winters. Apply Use Cases: A Practical Guide,
Second Edition. Addison-Wesley, 2001.

[17] Hayk Shoukourian, Torsten Wilde, Axel Auweter, and Arndt Bode.
Monitoring power data: A first step towards a unified energy efficiency
evaluation toolset for hpc data centers. Environmental Modeling & Soft-
ware, 2013.

[18] Tiffany Trader. Green Power Management Deep Dive. Green Comput-
ing Report, June 2013. http://www.greencomputingreport.com/gcr/
2013-06-05/green_power_management_deep_dive.html.

[19] Abhinav Vishnu, Shuaiwen Song, Andres Marquez, Kevin Barker, Dar-
ren Kerbyson, Kirk Cameron, and Pavan Balaji. Designing energy effi-
cient communication runtime systems: a view from PGAS models. The
Journal of Supercomputing, 63(3):691–709, 2013.

[20] Sean Wallace, Venkatram Vishwanath, Susan Coghlan, John Tramm,
Zhiling Lan, and Michael E. Papka. Application Power Profiling on
IBM Blue Gene/Q. In Proceedings of 2013 International Conference on
Cluster Computing. IEEE, 2013.

[21] V.M. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek,
D. Terpstra, and S. Moore. Measuring Energy and Power with PAPI.
In Parallel Processing Workshops (ICPPW), 2012 41st International
Conference on, pages 262–268, Sept 2012.

[22] Xu Yang, Zhou Zhou, Sean Wallace, Zhiling Lan, Wei Tang, Susan
Coghlan, and Michael E. Papka. Integrating Dynamic Pricing of Elec-
tricity into Energy Aware Scheduling for HPC Systems. In Proceedings
of SC13: International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’13, pages 60:1–60:11, New York,
NY, USA, 2013. ACM.

135

http://www.greencomputingreport.com/gcr/2013-06-05/green_power_management_deep_dive.html
http://www.greencomputingreport.com/gcr/2013-06-05/green_power_management_deep_dive.html

Appendices

136

Appendix A

Topics Under Consideration for
Future Versions

The following topics are either currently in active discussion or are planned
to be addressed in future versions of the specification. In some cases it will
be necessary to solicit additional feedback from the community to ensure we
properly address the issue in future versions.

• Support for Generic Notifications between Nodes - Working
on capability to send generic notifications between PowerAPI objects.
This is expected to be useful for compatibility with other community
projects and interoperability with job management.

• Better Support for Frequency Scaling - Frequency scaling features
are not universal between hardware implementations. It is desirable to
expose all of the possible behaviors of frequency scaling and we are
working towards better descriptive solutions to represent these behav-
iors in the most accurate manner possible.

• Coexistence of Implementations - One of the driving questions for
this future work is - how does one implementation interface with an-
other? It is possible, even likely that an implementor will focus on
implementing a portion or portions of the specification. This begs the
question of how does implementation A interact with implementation
B? Further, what role does the specification play in driving this inter-
action? We intend to work closely with the community to sort out this
issue and document the appropriate guidance in the next version of the
specification.

137

• Language Bindings - Some roles, system administrator for exam-
ple, more commonly interface with the platform through shells, shell
scripting or other interpretive languages like Perl or Python. We will
investigate adding some or all of these capabilities, via specification
and possibly prototypes, in future versions of the standard.

– The next version of the specification will include a complete Python
specification of all existing functions modified appropriately for
the Python language

• User Guide - The addition of a user guide could provide additional
useful information to both users and implementors. The addition of a
users guide will be considered and if realized will accompany subsequent
releases of the specification.

• Hypothetical System Example - We are considering creating a hy-
pothetical system example to use to discuss and clarify concepts and
higher level use cases. This will likely be included in the User Guide.

• Required versus Optional, or Quality of Implementation - We
plan to clarify and document more precisely what portions of the spec-
ification are required to be implemented, what portions are optional
and the definition of a quality implementation. This topic is compli-
cated by the fact that implementors are free to implement portions of
the specification.

– Some progress has been made on this topic for version 1.1 but
additional work is required.

• Policies - Security policies, priority of operations and privileges need
to be further vetted and specified when appropriate. This topic has a
large amount of intersection with the Coexistence of Implementations
topic and will be considered jointly.

• Unit Tests - Development of a unit test infrastructure is under con-
sideration, possibly to be associated with our prototype which will be
released open source at a later date. Unit tests might also be a way
for the implementation community to assure interaction between im-
plementations of portions of the specification that will be required to
work together.

• User Supplied Functions - We intend to investigate adding the abil-
ity for a user to supply a function for the purposes of generating a
statistic, for example.

138

• Multiple Platform Support - Currently the specification only con-
siders operation on a single platform. There is nothing preventing sup-
porting multiple platforms and exposing multiple platforms in a single
context in future versions. This will be considered for the next release
in conjunction with the Coexistence of Implementation issue.

• Generation Counter - We intend to consider the addition of a gen-
eration counter capability to be used in conjunction with counters that
have the potential for roll over. The generation counter could be used
to inform the user that this has taken place. This concept likely has
additional utility which is what will be explored for future releases of
the specification. Target: 1.X - Implementation should handle overflow
internally

• Time Conversion/Overflow - Time conversion convenience func-
tions are being considered to convert between PWR_Time values and
POSIX-compatible time representations. Included in this will be meth-
ods of detecting overflow during time value arithmetic.

• Context Refresh - We are considering adding the ability to refresh a
context int he case of a long lived context such as one that is used by
a persistent daemon. Yet to be resolved is what happens to existing
pointers, more specifically what happens when the user has a pointer to
an object that no longer exists after the refresh, or if this can happen.

• Enhanced Support for ACPI 5.0 - Collaborative Processor Per-
formance Control and Continuous Performance Control are currently
not supported. Support will require new attributes and some function
calls to allow for the flexible mechanisms provided in the ACPI 5.0
specification to allow expression of desired performance on a sliding,
abstract unit-less scale. ACPI 5.0 also supports gathering statistics
about the delivery of given performance values and the time spent in
certain states, which we intend to address. We anticipate adding this
support alongside the P-state and C-state functionality already in the
Power API in a future version of the specification.

• User/Resource Manager Interfaces - Work needs to be done in this
area but is best accomplished in collaboration with resource manager,
work load manager experts. We hope to include standard interfaces for
the user to query this system in future versions of the specification.

– Work has begun to develop general report and information mining
capabilities

139

• HPCS Manager to Resource Manager Interface - This interface
clearly needs some work. Again it seems that this would benefit greatly
from collaborative efforts.

– Work has begun to develop general report and information mining
capabilities

140

Appendix B

Change Log

The following list contains changes to the community Power API specification
version 1.0

• First release of community Power API

• PWR ObjGetSizeOfName - New function added that allows the user
to get the size of buffer required to successfully call PWR ObjGetName
for a given object.

• Features to support Power Stack

141

Appendix C

Alternative Programming
Language Bindings: Python

Acceptance of the Python language is growing within the HPCS System and
Power Management communities for its ease of scripting and its interoper-
ability with existing other applications and frameworks.

Python differs from C in many ways, including that it is an object-oriented
language and implements garbage collection. Because of these differences,
Python implementations of the API have some fundamental differences with
the way they are used. The functionality is the same as the C API specifi-
cation, but the “style” with which it is used is different in several respects,
as described in the remainder of this appendix.

C.1 Introduction

The general structure of the C API specification is followed throughout this
appendix. Differences between the Python language bindings and the C API
specification are clearly noted. The subsections of this Python specification
mirror the C API specification and are similarly labeled, e.g. section C.3.1
corresponds to 4.1 in the C API.

Python PEP-8 Standard Compliance

In general this Python API specification follows the PEP8 guidelines regard-
ing coding standards and naming conventions. These guidelines are followed
unless they create undue differences with how the C API specification defines

142

the names of various entities. An example of this is the C function: PWR_

CntxtGetEntryPoint(). In this Python Specification, GetEntryPoint() is
an instance method of the pwr.Cntxt class. PEP8 suggests method and func-
tion names start with a lower case letter, e.g. getEntryPoint(); but for con-
sistency with the C API, this Python specification uses GetEntryPoint().
A brief summary of the PEP8 naming conventions follows:

• Packages and Modules have short names with all lowercase.
• Classes are named with “CapWords” names, also known as “Camel-

Case”. The first letter is capitalized.
• Exceptions follow the same rules as classes with the additional rule that

“Error” be appended, such as “CamelCaseError”.
• Global Variables, Method and Function names, and Instance Variables

are named with “lower case with underscores” or “mixedCase” (with
the first character being lower case).

• Indentation and spacing are flexible within Python. See the PEP8
standard for an at-length discussion. C function parameters are aligned
with the opening delimiter so Python methods and functions and their
invocations are indented that way whenever possible.

• Non-Public or external variables are named with a “ leadingUnder-
score”. Virtual methods for which a child class method is required
may or may not have a leading underscore depending on whether that
method or its derivatives is meant to be publicly exposed. This docu-
ment only defines the public methods available via the “opaque” API

• Constants are named with “ALL CAPS”.
• Keyword collisions are handled by appending an underscore to the col-

liding keyword, such as “open ”.
• Always use “self” as the first argument for instance methods, and use

“cls” as the first argument for class methods.
Implementation Note: Throughout this appendix, module function and

class method names begin with an upper-case character.

C.2 Theory Of Operation

C.2.1 Overview

This section loosely follows the same tack as the C API chapter of the same
name (chapter 3 on page 12). In particular, it discusses any remarkable

143

caveats or differences between the Python Power API bindings and the C
Power API specification. Because the intended audience of this section in-
cludes those with limited experience with Python, seasoned Python develop-
ers are forewarned of some pedantic explanations of Python behavior.

Python Version Agnosticism

This Python specification aims to be agnostic with respect to Python ver-
sioning where possible. It is currently designed to include version 2.7 and on.
In particular, considerations needed to include version 2.7 are made with re-
spect to integer typing (section C.2.1 on page 149) and enumerations (section
C.2.1 on page 147). Enumerations as explained later in this section follow a
C-style syntax instead of the “enum” data type available as of Python 3.4.1

The Python import statement

Throughout this appendix the “pwr.” prefix is used on API class methods,
functions, and variables so that they are identifiable in the document. The
example below illustrates a typical usage of an Python module implementa-
tion of the API imported as pwr:

import <your.implementation.library.path> as pwr

myPwrCntxt = pwr.Cntxt(...)

Memory Management and Garbage Collection

The C API specification is very precise in defining the enumerations, struc-
tures, and entry-points that are to be used to access the power measurement
and control functionality exposed by the specification. In the pass-by-value
C language, “objects” are precisely defined structures that are allocated (and
freed) by the user of the API or the implementation of the API. The func-
tions defined by the C API use opaque handles to identify or point to these
objects to represent them and pass them around from place to place. Refer
to the C API “Theory of Operation” section 3 on page 12 for the language
independent information.

1https://docs.python.org/3/library/enum.html

144

Python is an object-oriented language, and uses “pass-by-object-reference”
to reference and transport data. Python treats everything as an object, in-
cluding references to other objects, however, it has no native concept of
pointers to locations in memory. Because of this, Python uses a garbage
collection mechanism to clean up previously instantiated objects which have
become completely de-referenced.

For example, the C API call PWR_CntxtInit() returns a handle “myP-
wrCntxt” that may identify or point to a location in memory containing the
context structure:

/* Example C code */

PWR_Cntxt myPwrCntxt;

rc = PWR_CntxtInit(PWR_CNTXT_DEFAULT, PWR_ROLE_RM, "foo", &myPwrCntxt)

;

The memory region pointed to by myPwrCntxt must be returned to the
heap once the application is done using it. This explicit memory manage-
ment is some of what necessitates the use of clean-up functions such as PWR_
CntxtDestroy(myPwrCntxt).

With Python, “myPwrCntxt” is a reference to an instance of the pwr.Cntxt
object class. Python counts the number of references to its objects, and once
that count goes to “0”, the object is garbage collected (freed). De-referencing
an object such as “myPwrCntxt” can be implicitly performed by returning
from the method or function in which it is being used, or explicitly performed
by calling “del”:

145

import <your.implementation.library.path> as pwr

def someFunction():

myPwrCntxt = pwr.Cntxt(pwr.CntxtType.DEFAULT, pwr.Role.RM, "foo")

localEPObj = myPwrCntxt.GetEntryPoint()

...

Once this function returns, localEPObj is out of its scope,

which

causes Python garbage collection to free its memory. myPwrCntxt

is

not garbage collected as it is needed/returned to the caller.

return myPwrCntxt

def anotherFunction():

LocalPwrCntxt = someFunction()

...

Explicitly releasing the LocalPwrCntxt object returned from

someFunction() by calling del.

del LocalPwrCntxt

... # More to be done, but no further need for the LocalPwrCntxt

object.

If myPwrCntxt is being used elsewhere, such as being passed via the re-
turn statement in a particular method or function, it is not freed (garbage
collected) until all possible usage is out of scope. This automatic garbage col-
lection eliminates the necessity to explicitly free the memory used by “myP-
wrCntxt”.

Encapsulation - Methods are part of the data classes

Another feature of Python is its object-oriented approach to defining data
and the methods that act on that data. Since much of the C API specification
is written with collections of functions using a few handles or pointers to
identify common data structures as parameters, Python’s object-oriented
approach fits well with the existing C API. In Python, classes are defined,
and those classes contain methods appropriate for the particular class. For
instance in C, PWR_CntxtInit() returns an opaque handle, “myPwrCntxt”.
That handle must be passed into functions as a parameter for that function
to know what data to act on:

146

/* Example C code: */

PWR_Cntxt myPwrCntxt;

PWR_Obj myPwrObj;

rc = PWR_CntxtInit(PWR_CNTXT_DEFAULT, PWR_ROLE_RM, "foo", &myPwrCntxt)

;

if (rc != PWR_RET_SUCCESS)

exit(-rc);

rc = PWR_CntxtGetEntryPoint(myPwrCntxt, &myPwrObj);

if (rc != PWR_RET_SUCCESS)

exit(-rc);

Note: The example above adds error handling that validates the return
code of the two C API functions called. This causes the C example to exit if
one of the calls fail, resulting in the same “exit on error” behavior that the
Python example that follows will exhibit. More on Python error handling in
C.2.1 on page 150.

In this Python API, myPwrCntxt is an object that is an instance of the
pwr.Cntxt class and that object contains methods for acting on that object:

myPwrCntxt = pwr.Cntxt(pwr.CntxtType.DEFAULT, pwr.Role.RM, "foo")

myPwrObj = myPwrCntxt.GetEntryPoint()

Descriptions and many more examples of class object and methods can
be found in section C.4 starting on page 169.

Enumerations

The C API relies heavily on C-style enumerations which, amongst other
things, enforce strict type-checking, and can provide automatic incrementing
of the enumeration’s value. Python 2.7 has no direct support for enumer-
ations. This Python API specification defines support for enumerations so
that they match in style and functionality with the defined enumerations in
the C API. This enables strict type-checking and automatic incrementing of
the enumeration’s value definitions:

147

Example Colors Enumeration (not part of the specification)

class Colors(_EnumerationClass):

pass

Colors("Blue")

Colors("Green")

Colors("Red")

Colors("Yellow")

Vendor implementations can add more entries here or look at

the object-oriented "Extending Existing Enumerations" description

below.

Colors("NUM_COLORS")

Colors("INVALID", -1)

Colors("NOT_SPECIFIED", -2)

Example Sizes Enumeration (not part of the specification)

class Sizes(_EnumerationClass):

pass

Sizes("Small")

Sizes("Medium")

Sizes("Large")

Vendor implementations can add more entries here or look at

the object-oriented "Extending Existing Enumerations" description

below.

Sizes("NUM_SIZES")

Sizes("INVALID", -1)

Sizes("NOT_SPECIFIED", -2)

Implementation Note: Defining a class such as Colors with only the do-
nothing pass statement imposes strict type-checking against the Colors class
instead of the generic (and externally defined) _Enumeration class. The sub-
sequent “constructors” being called to define the specific enumerations such
as Colors(“Green”) actually add the definition into the Colors class itself, as
opposed to instantiating the Colors class. This is implemented using Python
“MetaClasses”.

Enumerations Extension Enumerations can be extended in two ways:
(1) By adding more entries before the NUM_classname entry, as shown in
the example above, or (2) by extending a defined EnumerationClass in an
object-oriented way, as illustrated here:

148

Likely in some other vendor specific file...

Colors("Black", Colors.NUM_COLORS)

Colors("NUM_COLORS") # to reset NUM_COLORS

#

Sizes("X-Large", Sizes.NUM_SIZES)

Sizes("NUM_SIZES") # to reset NUM_SIZES

The code examples above show how a vendor implementation can extend
a defined EnumerationClass in this specification.

Enumerations Usage The following examples show Python code using
some of the enumerations defined in section C.3.3 starting on page 158:

Using enumerations as parameters

myPwrCntxt = pwr.Cntxt(pwr.CntxtType.DEFAULT, pwr.Role.RM, "foo")

Return the value of an enumeration

enumVal = int(pwr.Role.RM) # Gives a value of 4 to enumVal

Return the name of the enumeration:

enumStr = str(pwr.Role.RM) # Gives "RM" to enumStr

Strict type-checking can be enforced

class Cntxt():

def __init__(self, cntxtType, cntxtRole, cntxtName):

...

if not isinstance(cntxtType, CntxtType):

raise PwrError(ReturnCode.BAD_VALUE,

"{0:s}: Invalid context type.".format(self.__class__.

__name__))

...

Numeric Types

Python represents integer, unlimited length integer, and floating point num-
bers with its respective “int”, “long” and “float” built-in types. A Python
“float” is equivalent to a C double. Unlike Python 3.0, Python 2.7 still
distinguishes an “int” type from an unlimited-length “long”. Python imple-
mentations of this API shall use long for all integer types.

149

Time Entities

The C API specification in section 4.8 on page 27 describes encapsulating a
64-bit integer representing a time value in nanoseconds. Python represents
a time value in its time module using a floating point number represent-
ing time in seconds. Since Python time values are a floating point values
(e.g., 13.434582349 seconds) no precision is lost representing time this way.
Conversion back and forth between the C style integer representation and
Python’s default floating point format can be done as follows:

Convert Python’s floating point "seconds" value to a long

integer representing "nanoseconds":

timeIntNs = long(timeFloatSec * 1000000000.0)

Convert a long integer representing a count of "nanoseconds" to a

Python

"float" value containing a possible fractional value of "seconds":

timeFloatSec = float(timeIntNs) / 1000000000.0

The preferred Python implementation for handling time in this API is
described in section C.3.8 on page 165.

Error Handling

Error handling in the C API specification generally involves checking for a
non-zero integer return-code value. Python supports two methodologies for
robust error handling: (1) exceptions and (2) the ability of a method or func-
tion to return multiple values (in the form of a tuple). Returning multiple
values enables the return of an error code alongside of an expected (or un-
expected) result. This Python API specification uses Python exceptions for
things that are generally seen as fatal errors. Some functions in the API that
“get” or “set” values use per-value return codes to continue the operation in
the face of non-fatal errors.

Exceptions give the ability to funnel any errors in a Python method or
function through one or more error tracking regions wrapped by Python
try/except clauses. Errors that occur while instantiating objects, i.e. when
the class’s __new__() and __init__() methods are invoked, need to be
handled using Python exceptions. This is primarily because some of the
Python library initialization methods raise exceptions themselves and a class

150

__init__() method does not return any value at all. For these reasons, this
Python specification uses the Exception methodology.

In this specification, some methods return arrays of measurement in-
formation that may contain error information for individual measurements.
These methods may encounter an error reading an attribute on a particular
object in the group, but the rest of the attributes from the operation should
not be thrown away. For this type of functionality exceptions are only raised
in the case of a fatal error, and per-element access errors are handled with
error status information in results data structures.

For “Get” methods that return or yield multiple results from multiple op-
erations such as the AttrGetValue(s) methods and the pwr.Stat.GetValue(s)
methods, the pwr.ReturnCode value is included with the measurement data
for any particular operation. If the return code value is set to pwr.ReturnCode.SUCCESS,
then the measurement data is valid. Otherwise the data is invalid, and the
return code is set to be something besides pwr.ReturnCode.SUCCESS. See
C.4.4 on page 179 for more details.

Similarly, “Set” operations will yield failure details when errors occur.
If there are no errors, nothing will be generated. See C.4.4 information
returned.

Class PwrError An example is shown below of the definition of the
Exception class that is used throughout this Python API specification. See
section C.3.7 on page 163 for supported API ReturnCodes. All exceptions
generated by implementation of this specification should use and check for
this Exception class. Other system-level exceptions that may occur should
be accounted for but are not described in this document. Please refer to
system-level Python documentation for details on these other exceptions.

class PwrError(EnvironmentError):

def __init__(self, returnCode, errorMsg = None):

returnCode --> e.errno

str(returnCode) --> e.strerror

errorMsg --> e.errmsg

...

Below is an example of the pwr.PwrError exception:

151

import <your.implementation.library.path> as pwr

def someOptionalMethod():

Is not implemented

raise PwrError(ReturnCode.NOT_IMPLEMENTED,

"{0:s}: someOptionalMethod not implemented!".format(

self.__class__.__name__))

def ExampleOfExceptionHandling():

...

defaultResult = None

try:

theResult = myPwrObj.someOptionalMethod()

theResult += myPwrObj.SomeOtherMethod()

except PwrError as e:

print "ERROR!"

print e.errno # "-2"

print e.strerror # "NOT_IMPLEMENTED"

print e.errmsg # "someOptionalMethod not implemented!"

return defaultResult

"raise" can also be called here.

else:

return theResult

Multiple Return Values Python seemingly has the capability to return
multiple values from a method or function. These multiple values are actually
contained within a single object. This follows from the fact that everything
is an object in Python, including tuples, which is an object that contains a
collection of other objects:

def SomeMethodOrFunction():

return 1, 2

or "return (1, 2)"

The method or function can be called two ways: either returning the
elements of the tuple or the entire tuple as one indexed object (an array).
Here the tuple’s elements are returned:

retval1, retval2 = SomeMethodOrFunction()

or "(retval1, retval2) = SomeMethodOrFunction(arg)"

print str(retval1) # prints "1"

print str(retval2) # prints "2"

152

Here everything is treated as the singular-indexed tuple object:

retval = SomeMethodOrFunction()

print str(retval[0]) # prints "1"

print str(retval[1]) # prints "2"

In the case where a method or function returns a tuple of several arrays
that relate one-to-one with each other element-wise, they can be re-arranged
to be an array of tuples. This arrangement which may be more program-
matically simple to iterate over, among other things. Below is an example
of how to convert a tuple of arrays to an array of tuples using the standard
built-in Python function, zip:

def SomeGroupMethodOrFunction(arg):

return [1,2,3], [4,5,6]

array1, array2 = SomeGroupMethodOrFunction(arg)

print array1 # prints "[1,2,3]"

print array2 # prints "[4,5,6]"

combinedArray = zip(array1, array2)

print combinedArray # prints [(1,4),(2,5),(3,6)]

Iterators and Generators

Python has a special yield statement which allows a method or function
to return or “generate” a result without exiting from the logic flow of that
method or function. This allows an “Iterator” method/function to loop and
collect or act upon the particular objects that a “Generator” method/func-
tion may yield. This technique can be used to avoid the creation of very long,
memory intensive lists of objects such as those represented by a pwr.Grp ob-
ject.

In this Python specification, “Generators” are exposed as part of the API.
They complement the normal, list-giving methods as defined in the C API,
but do not replace them. They are prefixed with the name “Generate”. For
example, the method GenerateChildren() complements the GetChildren

method documented in C.4.2 on page 173). The following are some example
functions illustrating the use of iterators and generators versus lists:

153

This function creates a list of objects and returns it to the

calling function.

The entire list is created in memory before it is returned to the

caller.

def ObjectLister(numObjs):

objList = []

for objNum in numObjs:

newObj = ExampleObj()

objList.append(newObj)

return objList

This function generates objects on the fly, and yields each object

it creates

to the calling function one at a time. The code flows back into this

generator

on each iteration of the calling functions for loop.

def ObjectGenerator(numObjs):

for objNum in numObjs:

newObj = ExampleObj()

yield newObj

def ObjectConsumer():

for someObj in ObjectGenerator(1000000):

ObjectGenerator has yielded another object for this function

to use.

useObjectOnce(someObj) # Each individual "someObj" is garbage

collected

Here ObjectLister() creates/returns the entire list all at once.

for someObj in ObjectLister(1000000):

This function iterates over the list, and then when it is

done with the

entire list, the list and its objects get garbage collected.

useObjectOnce(someObj)

Shortcuts using Properties

Python offers the ability to attach “properties” to class methods and to
overload operators so that simple “set” and “get” methods and operators on
a class can appear and behave like standard class-variables. These shortcuts
make for simpler and more concise code. Throughout this Appendix, these
shortcuts will be mentioned for the various functions, methods and operators
for which they are available.

154

The standard way...

myEntryPoint = cntxt.GetEntryPoint()

myAttr = myPwrObj.AttrGetValue(pwr.AttrName.TEMP)

myAttrMeta = myPwrObj.AttrGetMeta(pwr.AttrName.TEMP, pwr.MetaName.

SAMPLE_RATE)

unionGroup = myPwrGrp.Union(someOtherPwrGrp)

With properties...

myEntryPoint = cntxt.entrypoint

myAttr = myPwrObj.TEMP.value

myAttrMeta = myPwrObj.TEMP.SAMPLE_RATE

unionGroup = myPwrGrp | someOtherPwrGrp

C.2.2 Power API Initialization

Initialization is accomplished by instantiating the pwr.Cntxt class which
returns a pwr.Cntxt object:

import <your.implementation.library.path> as pwr

myPwrCntxt = pwr.Cntxt(CtxtType, # pwr.CntxtType

Role, # pwr.Role

Name) # Python str

C.2.3 Roles

All of the same roles in the C API specification (section 3.3 on page 13)
should be supported by valid Python implementations.

C.2.4 System Description

All of the object types in the C API “System Description” (section 3.4 on
page 14) are represented by a Python base class, pwr.Obj. The pwr.Obj base
class supports functionality such as: obtaining an object’s parent, obtaining
its children, getting the object’s type, and navigating the object tree. Power
object type specific functionality is represented in child classes of the base
pwr.Obj class.

The C API on page 14, states that a variety of object types are to be de-
fined, but not necessarily used or supported. These are: “Platform”, “Cabi-
net”, “Chassis”, “Board”, “Node”, “Socket”, “Power Plane”, “Core”, “Mem-
ory”, and “NIC”. In the C API specification, opaque handles, which can be

155

pointers, are used to point to these various abstracted objects. However, in
Python, separate child classes to the pwr.Obj class are created to represent
these various types of objects. These object types are represented by respec-
tively named child classes such as pwr.ObjPlatform, pwr.ObjCabinet, and
pwr.ObjBoard.

C.2.5 Attributes

Each Python pwr.Obj object has two sets of associated attributes, “Global”
and “Explicit”. Refer to the C API “Attributes” section 3.5 on page 18 for
language independent details. Global attributes are guaranteed to exist on
every type of pwr.Obj.

Global attributes are accessed through methods defined in the base pwr.Obj
class, such as GetName, GetType, GetParent, GetChildren/GenerateChildren,
e.g.:

myType = myPwrObj.GetType()

myName = myPwrObj.GetName()

myParent = myPwrObj.GetParent()

myChildren = myPwrObj.GetChildren()

The GetEntryPoint context method is accessed via the pwr.Cntxt class
and returns the entry point object of the context’s system description:

import <your.implementation.library.path> as pwr

myPwrCntxt = pwr.Cntxt(pwr.CntxtType.DEFAULT, pwr.Role.MC, "

MonitorAndControl")

myPwrObj = myPwrCntxt.GetEntryPoint()

Explicit attributes are attributes that may be unique to one or more
pwr.Obj object types. They are accessed via the attribute interface. For
details on Python attribute methods, see section C.4.4 on page 179:

attrName = pwr.AttrName.POWER

measurement1 = myPwrObj.AttrGetValue(attrName)

measurement2 = myPwrObj.AttrGetValue(pwr.AttrName.VOLTAGE)

The attribute interface is preferred over explicit methods so that addi-
tional API methods are not necessary to expand functionality for a particular
object type.

156

C.2.6 Metadata

Metadata are supported as detailed in section 3.6 on page 19 of the C API.
To access metadata for a particular object attribute:

attrName = pwr.AttrName.PSTATE

metaName = pwr.MetaName.MIN

minPstate = myPwrObj.AttrGetMeta(attrName, metaName)

maxPstate = myPwrObj.AttrGetMeta(pwr.AttrName.PSTATE, pwr.MetaName.MAX

)

C.2.7 Thread Safety

There is no difference in the way threading is to be handled versus what is
described in the C API. Please refer to the C API specification (section 3.7
on page 19) for a discussion on threading and multiprocessing concerns.

C.3 Type Definitions

This chapter lists the enumerations and classes associated with the Python
version of the Power API and mirrors the naming and numbering used in the
C API specification (found in chapter 4 starting on page 20). The enumera-
tions listed in this section are required to exist, but not all enumerated values
are required to be supported by any specific Python implementation of the
Power API. Some of the enumerations are meant to be expanded, while some
are not. Each of the sections below discuss what compliant Python versions
of these enumerations and structures (classes) look like and whether they can
be expanded upon.

C.3.1 Opaque Types

The opaque types described in 4.1 on page 20 are represented as Python base
classes with the exception of the PWR_Status structure. The PWR_Status

structure is used for returning error status on functions that perform multiple
operations. Python implementations handle these errors differently and do
not need to use the PWR_Status structure.

157

class Cntxt(...):

...

class Grp(...):

...

class Obj(...):

...

class Stat(...):

...

These opaque abstract classes are meant to be overloaded by specific
implementations of this Python API. The discussion of the object type child
classes of the pwr.Obj class in section C.2.4 on page 155 illustrates this.

C.3.2 Globally Relevant Definitions

The Python bindings support all of the C API’s global definitions (see page
20), such as the version number definitions that are useful in the Python
API. Definitions like the maximum length of text-strings, are not useful
since Python automatically handles allocation and garbage collection for
strings. PWR MAJOR VERSION and PWR MINOR VERSION are ex-
posed through the pwr.GetMajorVersion() and pwr.GetMinorVersion()

functions defined in section C.4.7 on page 192).

C.3.3 Context Relevant Type Definitions

The Python bindings support the necessary power contexts needed for imple-
mentation and follows the design of the C API as defined on page 21. Power
contexts use the Python enumeration scheme described in C.2.1 on starting
on page 147 and contain a single “Default” power context enumeration. The
default context type carries with it the default capabilities of the API. For
vendor, platform, and model-specific capabilities, implementors can add new
context types.

Enumeration Class CntxtType

All implementations must support the "DEFAULT" context. The correspond-
ing C API enumeration is on page 22. The following is the enumeration for
the default context type:

158

class CntxtType(_EnumerationClass):

pass

CntxtType("DEFAULT")

Add the following to extend the enumeration for context types for a new,
non-default vendor. (see “Enumerations Extension” C.2.1 on page 148):

CntxtType("VENDORNAME")

Enumeration Class Role

Default roles are defined by the pwr.Role enumeration. All contexts support
one or more of these roles. See page 22 for the C API enum definition.

class Role(_EnumerationClass):

pass

Role("APP") # Application

Role("MC") # Monitor and Control

Role("OS") # Operating System

Role("USER") # User

Role("RM") # Resource Manager

Role("ADMIN") # Administrator

Role("MGR") # HPCS Manager

Role("ACC") # Accounting

#

Vendor implementations SHALL NOT add roles!

#

Role("NUM_ROLES")

Role("INVALID", -1)

Role("NOT_SPECIFIED", -2)

C.3.4 Object Relevant Type Definitions

Enumeration Class ObjType

All implementations of the Power API are required to have the following
object types enumerated. Implementations may add object types to these
defaults, but must do so using the methods described in C.2.1 on page 148.
The corresponding C API enumeration is on page 23:

159

class ObjType(_EnumerationClass):

pass

ObjType("PLATFORM")

ObjType("CABINET")

ObjType("CHASSIS")

ObjType("BOARD")

ObjType("NODE")

ObjType("SOCKET")

ObjType("CORE")

ObjType("POWER_PLANE")

ObjType("MEM")

ObjType("NIC")

Vendor implementations can add more entries here or look at

the object-oriented "Enumerations Extension" description previously.

ObjType("NUM_OBJ_TYPES")

ObjType("INVALID", -1)

ObjType("NOT_SPECIFIED", -2)

C.3.5 Attribute Relevant Type Definitions

Enumeration Class AttrName

The following default attributes must be enumerated in any implementa-
tion of this API. If more attributes are desired to be added for a particular
implementation, see the methods described in C.2.1 on page 148. The cor-
responding C API enumeration is on page 24:

160

class AttrName(_EnumerationClass):

pass

AttrName("PSTATE") # Python long

AttrName("CSTATE") # Python long

AttrName("CSTATE_LIMIT") # Python long

AttrName("SSTATE") # Python long

AttrName("CURRENT") # Python float, amps

AttrName("VOLTAGE") # Python float, volts

AttrName("POWER") # Python float, watts

AttrName("POWER_LIMIT_MIN") # Python float, watts

AttrName("POWER_LIMIT_MAX") # Python float, watts

AttrName("FREQ") # Python float, Hz

AttrName("FREQ_LIMIT_MIN") # Python float, Hz

AttrName("FREQ_LIMIT_MAX") # Python float, Hz

AttrName("ENERGY") # Python float, joules

AttrName("TEMP") # Python float, degrees Celsius

AttrName("OS_ID") # Python long

AttrName("THROTTLED_TIME") # Python long

AttrName("THROTTLED_COUNT") # Python long

Vendor implementations can add more entries here or look at

the object-oriented "Enumerations Extension" description previously.

AttrName("NUM_ATTR_NAMES")

AttrName("INVALID", -1)

AttrName("NOT_SPECIFIED", -2)

Built-in Support for AttrDataType

In the C API specification a pwr.AttrDataType enumeration is defined. This
is to ease the type checking of data coming from various power attributes.
In Python, object “typing” is built-in such that this enumeration becomes
redundant and not meaningful.

There are two basic data types found to represent the various values that
may be used with any valid Python API methods; “long” and “float”. They
may be type-checked as follows:

val = SomeMethodOrFunction()

if not isinstance(val, float):

raise pwr.PwrError(pwr.ReturnCode.BAD_VALUE, "Bad temperature

value returned!")

161

Class AttrAccessError

In the Python API, the PWR_AttrAccessError (along with the PWR_Stat

structure), have been replaced by the functionality of measurement named
tuples and lists of measurement named tuples. For details on these named
tuples, please refer to the discussion on AttrGetValue and AttrSetValue

starting at C.4.4 on page 179.

C.3.6 Metadata Relevant Type Definitions

Enumeration Class MetaName

The default implementation/context must at least have these Metadata names
enumerated. Additional metadata names may be defined using the methods
described in C.2.1 on page 148. The corresponding C API enumeration is on
page 26:

162

class MetaName(_EnumerationClass):

pass

MetaName("NUM") # Python long

MetaName("MIN") # Python long or Float (depending on attr

. type)

MetaName("MAX") # Python long or Float (depending on attr

. type)

MetaName("PRECISION") # Python long

MetaName("ACCURACY") # Python Float

MetaName("UPDATE_RATE") # Python Float

MetaName("SAMPLE_RATE") # Python Float

MetaName("TIME_WINDOW") # pwr.Time object

MetaName("TS_LATENCY") # pwr.Time object

MetaName("TS_ACCURACY") # pwr.Time object

MetaName("MAX_LEN") # Python long (max length of any metadata

string)

MetaName("NAME_LEN") # Python long (max length of NAME)

MetaName("NAME") # Python String

MetaName("DESC_LEN") # Python long (max length of DESC)

MetaName("DESC") # Python String

MetaName("VALUE_LEN") # Python long (max length of meta value

at index)

MetaName("VENDOR_INFO_LEN") # Python long (max length of VENDOR_INFO

MetaName("VENDOR_INFO") # Python String

MetaName("MEASURE_METHOD") # Python long (0/1 depending on real/

model meas.)

Vendor implementations can add more entries here or look at

the object-oriented "Enumerations Extension" description previously.

MetaName("NUM_META_NAMES")

MetaName("INVALID", -1)

MetaName("NOT_SPECIFIED", -2)

Implementation Note: The “LEN”-related definitions above are not useful
in any Python implementation but are included for consistency with the C
API specification.

C.3.7 Error Return Definitions

Enumeration Class ReturnCode

The following error definitions are required to be defined for every implemen-
tation of the API. New return code definitions may be added at the end of
this list. The corresponding C API enumeration is on page 26.

163

class ReturnCode(_EnumerationClass):

negative = True

ReturnCode("WARN_NO_GRP_BY_NAME", 5)

ReturnCode("WARN_NO_OBJ_BY_NAME", 4)

ReturnCode("WARN_NO_CHILDREN", 3)

ReturnCode("WARN_NO_PARENT", 2)

ReturnCode("WARN_NOT_OPTIMIZED", 1)

#

ReturnCode("SUCCESS") # 0

ReturnCode("FAILURE") # -1

ReturnCode("NOT_IMPLEMENTED") # -2

ReturnCode("EMPTY") # -3

ReturnCode("INVALID") # -4

ReturnCode("LENGTH") # -5

ReturnCode("NO_ATTRIB") # -6

ReturnCode("NO_META") # -7

ReturnCode("READ_ONLY") # -8

ReturnCode("BAD_VALUE") # -9

ReturnCode("BAD_INDEX") # -10

ReturnCode("OPT_NOT_ATTEMPTED") # -11

ReturnCode("NO_PERM") # -12

ReturnCode("OUT_OF_RANGE") # -13

ReturnCode("NO_OBJ_AT_INDEX") # -14

C.3.8 Time Related Definitions

In the C API, uint64 (unsigned 64-bit integer) values are used to represent a
value in nanoseconds. Native Python time values are stored in floating point
format. A full description of why Python implementations of the Power API
needs some extra features is given in section C.2.1 on page 150. The preferred
implementation for handling time in Python implementations of the Power
API is as follows:

164

Class Time

class Time(long):

def __init__(self, timeVal):

convert to ns if timeVal is a float (seconds) value

...

To access:

now = pwr.Time(): # A generic, opaque time value

nowNs = long(now) # Converts and returns the time value to a long

integer

representing a number of nanoseconds.

nowSec = float(now) # Converts and returns the time value to a

floating point

value representing a number of seconds.

A set of definitions is used for defining what a time value set to None

means:

PWR_TIME_UNINIT = None # Time value was never initialized

PWR_TIME_UNKNOWN = None # Time value was never recorded

Class TimePeriod

The PWR_TimePeriod struct in C on page 28, is represented in Python by a
class:

class TimePeriod():

def __init__(self,

start = TIME_UNINIT,

stop = TIME_UNINIT,

instant = TIME_UNINIT):

self._start = Time(start)

self._stop = Time(stop)

self._instant = Time(instant)

...

To access the various data items of the pwr.TimePeriod class instance,
“myTimePeriod”:

165

Get (read) access

startTimeSec = float(myTimePeriod.start) # as Seconds (float

value)

stopTimeNs = long(myTimePeriod.stop) # as Nanoseconds (long value

)

instantTime = myTimePeriod.instant # as pwr.Time (pwr.Time

object)

Set (write) access

myTimePeriod.start = startTimeNs # (a long value)

myTimePeriod.stop = stopTimeSec # (a float value)

myTimePeriod.instant = PWR_TIME_UNINIT # (None)

C.3.9 Statistics Relevant Type Definitions

For background on the overall support for statistics in the Power API refer to
section 4.9 on page 28, and the “Statistics Functions” in section 5.6 starting
on page 69.

Enumeration Class AttrStat

The following class AttrStat(_EnumerationClass) includes the list of currently-
defined statistics potentially available to the user of an implementation. Ad-
ditional Statistics operations may be vendor-defined using the methods de-
scribed in C.2.1 on page 148. See section 4.9 on page 29 for the C API
enumeration:

class AttrStat(_EnumerationClass):

pass

AttrStat("MIN")

AttrStat("MAX")

AttrStat("AVG")

AttrStat("STDEV")

AttrStat("CV")

AttrStat("SUM")

Vendor implementations can add more entries here or look at

the object-oriented "Enumerations Extension" description previously.

AttrStat("NUM_ATTR_STATS")

AttrStat("INVALID", -1)

AttrStat("NOT_SPECIFIED", -2)

166

Enumeration Class ID

The C API definition for the PWR ID enumeration is on page 29. Python
implementations use ID-enumerated types in support of the method GetRe-
portByID in section C.5.1. Vendor specific additions to this enumeration
class can be added using the methods described in C.2.1 on page 148. The
corresponding C API enumeration is on page 29:

class ID(_EnumerationClass):

pass

ID("USER")

ID("JOB")

ID("RUN")

#

ID("NUM_IDS")

ID("INVALID", -1)

ID("NOT_SPECIFIED", -2)

C.3.10 OS Hardware Type Definitions

Class OperState

A Python class represents the C API PWR_OperState structure as follows:

class OperState():

def __init__(self, cStateNum, pStateNum):

self.c_state_num = cStateNum

self.p_state_num = pStateNum

...

To access the various data items of the pwr.OperState class instance,
myOpState:

Get (read) access

cState = myOpState.c_state_num

pState = myOpState.p_state_num

Set (write) access

myOpState.c_state_num = pwr.SleepState.SHALLOW

myOpState.p_state_num = pwr.PerfState.FASTEST

167

C.3.11 Application OS Interface Type Definitions

Enumeration Class RegionHint

Please see page 30 for the C API description of this enumeration.

class RegionHint(_EnumerationClass):

pass

RegionHint("DEFAULT")

RegionHint("SERIAL")

RegionHint("PARALLEL")

RegionHint("COMPUTE")

RegionHint("COMMUNICATE")

RegionHint("IO")

RegionHint("MEM_BOUND")

Vendor implementations can add more entries here or look at

the object-oriented "Enumerations Extension" description previously.

RegionHint("NUM_REGION_HINTS")

RegionHint("INVALID", -1)

RegionHint("NOT_SPECIFIED", -2)

Enumeration Class RegionIntensity

Please see page 31 for the C API description of this enumeration.

class RegionIntensity(_EnumerationClass):

pass

RegionIntensity("HIGHEST")

RegionIntensity("HIGH")

RegionIntensity("MEDIUM")

RegionIntensity("LOW")

RegionIntensity("LOWEST")

RegionIntensity("NONE")

Vendor implementations can add more entries here or look at

the object-oriented "Enumerations Extension" description previously.

RegionIntensity("NUM_REGION_INTENSITIES")

RegionIntensity("INVALID", -1)

RegionIntensity("NOT_SPECIFIED", -2)

Enumeration Class SleepState

Please see page 31 for the C API description of this enumeration.

168

class SleepState(_EnumerationClass):

pass

SleepState("NO")

SleepState("SHALLOW")

SleepState("MEDIUM")

SleepState("DEEP")

SleepState("DEEPEST")

Vendor implementations can add more entries here or look at

the object-oriented "Enumerations Extension" description previously.

SleepState("NUM_SLEEP_STATES")

SleepState("INVALID", -1)

SleepState("NOT_SPECIFIED", -2)

Enumeration Class PerfState

Please see page 32 for the C API description of this enumeration.

class PerfState(_EnumerationClass):

pass

PerfState("FASTEST")

PerfState("FAST")

PerfState("MEDIUM")

PerfState("SLOW")

PerfState("SLOWEST")

Vendor implementations can add more entries here or look at

the object-oriented "Enumerations Extension" description previously.

PerfState("NUM_PERF_STATES")

PerfState("INVALID", -1)

PerfState("NOT_SPECIFIED", -2)

C.4 Core (Common) Interface Methods

Core Interface Methods fall into the following categories:
• Initialization
• Navigation
• Group
• Attribute
• Metadata
• Statistics
For background information on the methods described in this section,

please refer to the C API function descriptions starting at page 33. Many of

169

the Interface methods defined are implemented as class instance constructor
methods in Python versions of this API. Because of the garbage collection
capabilities of Python, some of the “Destroy” methods are not needed. Those
differences are noted in the following sections. If an error occurs instantiating
an object, a pwr.PwrError exception is raised.

C.4.1 Initialization

Method Cntxt

A context is an instance of the pwr.Cntxt class:

class Cntxt():

def __init__(self, cntxtType, cntxtRole, cntxtName):

...

def GetEntryPoint():

...

Note: the try/except clause has been added for example purposes, but is
not included in all the code examples throughout this document. See general
discussion about Python Error Handling in section C.2.1 on page 150.

To instantiate a default power context for a user role:

try:

myPwrCntxt = pwr.Cntxt(pwr.CntxtType.DEFAULT, pwr.Role.RM, "

Default")

except pwr.PwrError as e:

print str(e.errno)

print e.errmsg

print e.strerror

#

Where:

cntxtType is a pwr.CntxtType

pwrRole is a pwr.Role type

cntxtName is a Python str

Returns:

myPwrCntxt is a pwr.Cntxt context

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

170

Method CntxtDestroy NOT IMPLEMENTED

Because Python implements garbage collection, there is no need to de-initialize
or destroy a context, and a CntxtDestroy method need not be implemented.

C.4.2 Hierarchy Navigation Methods

Method GetEntryPoint

Once a context has been established, the entry point in the object tree can be
queried. Each context has its own entry point. Calling the GetEntryPoint

method on the users context returns the context specific entry point.

myPwrObj = myPwrCntxt.GetEntryPoint()

myPwrObj = myPwrCntxt.entrypoint # Shortcut

#

Returns:

pwr.Obj object or None

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

Once the entry point object is obtained, it can be queried to get its
Type, Name, Parent, and Children. These query methods return either an
object or a pwr.Grp (in the case of GetChildren()), or either None or an
empty pwr.Grp if the object(s) are non-existent. Not having a parent or any
children is not considered an error condition. Note that the Python handling
of non-existent parents and children is different than how these conditions are
handled in the C API, where a non-zero int is returned. In Python returning
an empty group or None enables code to handle hierarchy navigation more
naturally then if an exception was to be raised. The GetChildren() method
has a generator method, GenerateChildren().

Method GetType

This method returns the pwr.ObjType of an object.

171

objType = myPwrObj.GetType()

objType = myPwrObj.objType # Shortcut

#

Returns:

pwr.ObjType or pwr.ObjType.INVALID upon failure

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

Method GetName

This method returns the name of an object.

objName = myPwrObj.GetName()

objName = myPwrObj.name # Shortcut

#

Returns:

String containing myPwrObj’s name

This method raises a pwr.PwrError exception when something goes

wrong,

such as if myPwrObj does not actually represent a pwr.Obj instance

.

The possible exception errors are:

pwr.ReturnCode.FAILURE

Method GetParent

Note that unlike the corresponding C API function on page 38 the Python
GetParent Method returns None when the base object has no parent. This
allows for handling this condition in Python without needing a try/except

block.

objParent = myPwrObj.GetParent()

objParent = myPwrObj.parent # Shortcut

#

Returns:

pwr.Obj type or None if there is no parent.

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

172

Method GetChildren and GenerateChildren

Note that unlike the corresponding C API function on page 39, the Python
GetChildren method returns an empty group when the base object has no
children. This allows for handling this condition in Python without needing
a try/except block.

Return a pwr.Grp of the children:

objChildrenGrp = myPwrObj.GetChildren() # Returns a PwrGrp Group.

objChildrenGrp = myPwrObj.children # Shortcut

Generator of pwr.Obj children. Yields pwr.Obj members of the group.

for childPwrObj in myPwrObj.GenerateChildren():

Iterate on childPwrObj...

#

Returns:

objChildrenGrp is a pwr.Grp containing pwr.Obj

type objects of children. An empty pwr.Grp may be returned

when there are no children.

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

Method GetObjByName

A pwr.Obj object can be obtained using its name. Because the the naming
system used for this method may be vendor-specific, this method is neces-
sarily vendor implementation-specific and should not be considered generally
portable. Vendor-specific details should be documented by the API imple-
mentor/vendor.

namedPwrObj = myPwrCntxt.GetObjByName(objName)

#

Where:

objName is a Python string containing the power object’s name

Returns:

namedPowerObj is a pwr.Obj or None upon failure

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

pwr.ReturnCode.NOT_IMPLEMENTED

173

Implementation Note: Object names are vendor-implementation-dependent
and are not defined in this API. If the name of an object or group is not sup-
ported, a pwr.PwrError error code with pwr.ReturnCode.NOT_IMPLEMENTED

is returned.

C.4.3 Group Methods

All Power API groups are associated with a context, therefore the group
creation and retrieval methods are encapsulated as pwr.Cntxt class methods.
See page 41 for the C API’s full text description of Group operations.

Method GrpCreate

If a pwr.PwrError does not get raised during creation of this group, an
empty pwr.Grp group is returned. No specific “Destroy” method is needed
for any pwr.Grp groups. Python’s garbage collection handles the clean up of
pwr.Grp groups that are no longer referenced.

myPwrGrp = myPwrCntxt.GrpCreate()

#

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

A Power API Group is an encapsulated Python list of pwr.Obj objects.
This encapsulation offers strict type-checking over that of standard Python
lists, but gives inheritance of all the power of Python lists to the pwr.Grp:

myGroup = myPwrCntxt.GrpCreate()

someOtherList = [1,2,3]

print isinstance(myGroup, list) # Prints: "True"

print isinstance(myGroup, pwr.Grp) # Prints: "True"

print isinstance(someOtherList, list) # Prints: "True"

print isinstance(someOtherList, pwr.Grp) # Prints: "False"

Method iter(Grp)

The following standard Python function generates an iterator over the ob-
jects in a pwr.Grp. See section C.2.1 on page 153 for more background on
“generators”:

174

for pwrObj in iter(myPwrGrp):

Iterate on pwrObj...

#

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

Method AddObj

This method adds a pwr.Obj to a group. As noted in the C API description
on page 42 attempting to add an object that is already in a group is not
allowed and will result in no insertion. The following shows examples of
adding a pwr.Obj to a group.

myPwrGrp.AddObj(pwrObj)

myPwrGrp = myPwrGrp + pwrObj # Shortcut

myPwrGrp = myPwrGrp + [pwrObj, ...] # Shortcut

myPwrGrp += pwrObj # Shortcut

myPwrGrp += [pwrObj, ...] # Shortcut

#

Where:

pwrObj is a pwr.Obj object

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

Method RemoveObj

This removes a pwr.Obj from the group.

175

myPwrGrp.RemoveObj(pwrObj)

myPwrGrp = myPwrGrp - pwrObj # Shortcut

myPwrGrp = myPwrGrp - [pwrObj, ...] # Shortcut

myPwrGrp -= pwrObj # Shortcut

myPwrGrp -= [pwrObj, ...] # Shortcut

#

Where:

pwrObj is a pwr.Obj object

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

Method GetNumObjs

The following returns the number of objects in a group:

myPwrGrpNumObjs = myPwrGrp.GetNumObjs()

myPwrGrpNumObjs = len(myPwrGrp) # Shortcut

#

Returns:

myPwrGrpNumObjs is an integer

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

Method GetObjByIndx NOT IMPLEMENTED

In Python API implementations, there is no need for a Power API method
to index a group’s objects. Python’s built-in list class, which forms the
foundation of a pwr.Grp has all the necessary indexing and iteration methods
needed. The C API’s PWR_GrpGetObjByIndx() function, is documented in
5.3 on page 43.

Python’s built-in iterator

for pwrObj in iter(myPwrGrp):

print pwrObj.GetName()

Trick: To index an item in a group:

pwrObj3 = list(iter(myPwrGrp))[3]

176

Method Duplicate

The following duplicates the myPwrGrp group creating the new duplicateGrp:

duplicateGrp = myPwrGrp.Duplicate()

duplicateGrp = pwr.Grp(myPwrGrp) # Shortcut: copy constructor.

#

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

Method Union and GenerateUnion

The following example creates a new group unionGrp containing all the ob-
jects that exist in either or both of the myPwrGroup and the someOtherPwrGrp
group. The associated GenerateUnion() method is also shown:

unionGrp = myPwrGrp.Union(someOtherPwrGrp)

unionGrp = myPwrGrp | someOtherPwrGrp # Shortcut

unionGrp |= someOtherPwrGrp # Shortcut

Generator of pwr.Objs:

for pwrObj in myPwrGrp.GenerateUnion(someOtherPwrGrp):

Iterate on pwrObj...

#

Where:

someOtherPwrGroup is a pwr.Grp object to merge with

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

Method Intersection and GenerateIntersection

The following creates a new group containing only objects that exist in both
the myPwrGroup and someOtherPwrGrp groups. The associated GenerateIntersection()

method is also shown:

177

intersectionGrp = myPwrGrp.Intersection(someOtherPwrGrp)

intersectionGrp = myPwrGrp & someOtherPwrGrp # Shortcut

intersectionGrp &= someOtherPwrGrp # Shortcut

Generator of pwr.Objs:

for pwrObj in myPwrGrp.GenerateIntersection(someOtherPwrGrp):

Iterate on pwrObj...

#

Where:

someOtherPwrGroup is a pwr.Grp object to merge with

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

Method Difference and GenerateDifference

The following creates a new group containing all the objects of the cur-
rent group or another but do not exist in both groups. The associated
GenerateDifference() method is also shown:

differenceGrp = myPwrGrp.Difference(someOtherPwrGrp)

differenceGrp = myPwrGrp - someOtherGrp # Shortcut

differenceGrp -= someOtherGrp # Shortcut

Generator of pwr.Objs:

for pwrObj in myPwrGrp.GenerateDifference(someOtherPwrGrp):

Iterate on pwrObj...

#

Where:

someOtherPwrGroup is a pwr.Grp object to merge with

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

Method SymDifference

The following creates new group containing members in the current group
or another but not members that are in both groups, that is, the symmetric
difference of the current group and another. This can be implemented as the
Union() minus the Intersection() of two groups.

178

symDifferenceGrp = myPwrGrp.SymDifference(someOtherPwrGrp)

symDifferenceGrp = myPwrGrp ^ someOtherGrp # Shortcut

symDifferenceGrp ^= someOtherGrp # Shortcut

#

Where:

someOtherPwrGroup is a pwr.Grp object to merge with

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

pwr.ReturnCode.BAD_VALUE

Method GetGrpByName

For general details see section 5.3 on page 48. As noted in that description,
valid group names are vendor-specific. Use of this function should be con-
sidered non-portable. Vendor-specific details should be documented by the
API implementor/vendor. An example of getting a group by name follows:

groupName = "vendor_supported_group_name_string"

myPwrGrp = myPwrCntxt.GetGrpByName(groupName)

#

Where:

groupName: vendor specific string designating group name

Returns:

myPwrGrp is a pwr.Grp object or None if none found

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

C.4.4 Attribute Methods

Method pwr.Obj.AttrGetValue

The pwr.Obj AttrGetValue method returns a Python named tuple describ-
ing a measurement. A measurement is a namedtuple type from the collections
standard Python library module. Its contents can best be described by list-
ing the definition of the named tuple and providing an example of how to
access its members:

179

Definition of the named tuple used to contain a measurement:

InfoFromGet = collections.namedtuple("InfoFromGet",

"attr value obj timestamp rc")

To return a single measurement:

attrName = pwr.AttrName.TEMP

measInfo = myPwrObj.AttrGetValue(attrName)

Access the results:

measurementAttr = measInfo.attr

measurementValue = measInfo.value

measurementPwrObj = measInfo.obj

measurementTime = measInfo.timestamp

measurementError = measInfo.rc

#

When a general failure occurs, a pwr.PwrError exception is raised.

The possible exception errors are:

pwr.ReturnCode.FAILURE

pwr.ReturnCode.BAD_VALUE

Method pwr.Obj.AttrSetValue

Similarly, there is an attribute “Set” method for the object, which is capable
of setting the value of one or more attributes on that object. This method
uses a named tuple similar to the one defined in C.4.4 on page 179 to feed a
list of one or more attribute-value pairs to the attribute “Set“ methods. A
definition of this named tuple and an example of how to create it follow for
providing an input to the Attribute “Set” methods:

Definition of the named tuple used to contain a setting:

InfoForSet = collections.namedtuple("InfoForSet", "attr value")

Another named tuple definition is used to extract any error information
that the attribute operation(s) may yield:

Definition of the named tuple used to contain error information

ErrorFromSet = collections.namedtuple("ErrorFromSet", "attr obj rc")

In the below example, the Attribute “Set” method, along with the named
tuples for setting it and error handling is shown:

180

To set a single attribute and handle any error that may occur:

setting = InfoForSet(attr=pwr.AttrName.CSTATE, value=3)

The for-loop will catch any possible ErrorFromSet named tuples

that the Set operation may yield.

for setError in myPwrObj.AttrSetValue(setting):

errorAttribute = setError.attr

errorPwrObj = setError.obj

errorReturnCode = setError.rc

Process error here...

#

In case of general failures, the possible exception errors are:

pwr.ReturnCode.FAILURE

pwr.ReturnCode.BAD_VALUE

Method pwr.Obj.AttrGetValues

The pwr.Obj AttrGetValues method returns a list containing Python mea-
surement named tuples. Returning a list keeps consistency with the pwr.Grp
AttrGetValue() and pwr.Grp AttrGetValues() methods which return the re-
sults from multiple measurements or queries as items in a list. For each of
the AttrGetValue(s) methods there is a generator method which returns a
memory-efficient iterator as opposed to a Python list. Please refer to C.4.4
on page 179 for details.

To return a measurement for each attribute in the list:

attrList = [pwr.AttrName.TEMP, pwr.AttrName.VOLTAGE]

measList = myPwrObj.AttrGetValues(attrList)

for measInfo in measList:

Access the results:

measurementAttr = measInfo.attr

measurementValue = measInfo.value

measurementPwrObj = measInfo.obj

measurementTime = measInfo.timestamp

measurementError = measInfo.rc

To iterate on the results yielded by the generator method:

for measInfo in myPwrObj.AttrGenerateValues(attrList):

Access the results:

measurementAttr = measInfo.attr

measurementValue = measInfo.value # etc.

181

Method pwr.Obj.AttrSetValues

The AttrSetValues method sets the values for multiple attributes on a
pwr.Obj, yielding any errors that may have occurred. Please refer to C.4.4
on page 180 for details.

To set multiple attributes and handle any errors that may occur:

setting1 = InfoForSet(attr=pwr.AttrName.CSTATE, value=3)

setting2 = InfoForSet(attr=pwr.AttrName.PSTATE, value=2)

settingList = [setting1, setting2]

for setError in myPwrObj.AttrSetValues(settingList):

errorAttribute = setError.attr

errorPwrObj = setError.obj

errorReturnCode = setError.rc

Process error here...

Method pwr.Obj.AttrIsValid

To determine the validity of an attribute on a particular pwr.Obj object:

pwrAttr = pwr.AttrName.ENERGY

attrGood = myPwrObj.AttrIsValid(pwrAttr)

attrGood = myPwrObj.ENERGY.isvalid # Shortcut

#

Where:

pwrAttr is a pwr.AttrName type

Returns:

True or False

#

Method pwr.Grp.AttrGetValue

The pwr.Grp AttrGetValue method returns a list containing Python named
tuples containing the resulting measurements of an attribute across a pwr.Grp.
Returning a list keeps consistency with the pwr.Obj AttrGetValues() and
pwr.Grp AttrGetValues() methods which return the results from multiple
measurements or queries as items in a list. The InfoFromGet() named tuple
is used in the same way as with the pwrObj AttrGetValue(s) methods for
containing the “measurement” information. Please refer to C.4.4 on page
179 for details. For this method there is a generator method which returns
a memory-efficient iterator as opposed to a Python list.

182

Return measurements for the given attribute for all group members

measList = myPwrGrp.AttrGetValue(pwr.AttrName.TEMP)

for measInfo in measList:

Access the results:

measurementAttr = measInfo.attr

measurementValue = measInfo.value

measurementPwrObj = measInfo.obj

measurementTime = measInfo.timestamp

measurementError = measInfo.rc

To iterate on the results yielded by the generator method:

for measInfo in myPwrGrp.AttrGenerateValues(pwr.AttrName.TEMP):

Access the results:

measurementAttr = measInfo.attr

measurementValue = measInfo.value # etc.

#

When a failure occurs, a pwr.PwrError exception is raised.

The possible exception errors are:

pwr.ReturnCode.FAILURE

pwr.ReturnCode.BAD_VALUE

Method pwr.Grp.AttrSetValue

The pwr.Grp AttrSetValue method sets the value of an attribute on all the
pwr.Obj objects across a pwr.Grp. The named tuple definitions InfoForSet()
and ErrorFromSet() are used in the same way as with the pwrObj AttrSet-
Value(s) methods for extraction and construction of the “settings” and error
named tuples. Please refer to C.4.4 on page 179 and C.4.4 on page 180 for
details.

Set a single attribute for all objects in a group

and handle any errors that may occur:

setting = pwr.InfoForSet(attr=pwr.AttrName.CSTATE, value=3)

for setError in myPwrGrp.AttrSetValue(setting):

errorAttribute = setError.attr

errorPwrObj = setError.obj

errorReturnCode = setError.rc

Process error on particular object

#

In case of general failures, the possible exception errors are:

pwr.ReturnCode.FAILURE

pwr.ReturnCode.BAD_VALUE

183

Method pwr.Grp.AttrGetValues

The pwr.Grp.AttrGetValues() method returns a list containing Python
measurement named tuples. Returning a list maintains consistency with the
pwr.Obj.AttrGetValues() and pwr.Grp.AttrGetValue() methods which
return the results from multiple measurements or queries as items in a list.
For each of the AttrGetValue(s) methods, there is a generator method which
returns a memory-efficient iterator as opposed to a Python list:

To return a list of measurements of a list of attributes across the

pwr.Obj members of a pwr.Grp, and access the results:

attrList = [pwr.AttrName.TEMP, pwr.AttrName.POWER]

measList = myPwrGrp.AttrGetValues(attrList)

for measInfo in measList:

Access the results:

measurementAttr = measInfo.attr

measurementValue = measInfo.value

measurementPwrObj = measInfo.obj

measurementTime = measInfo.timestamp

measurementError = measInfo.rc

To iterate on the results yielded by the generator method:

for measInfo in myPwrGrp.AttrGenerateValues(attrList):

Access the results:

measurementAttr = measInfo.attr

measurementValue = measInfo.value # etc.

Method pwr.Grp.AttrSetValues

This method sets values for multiple attributes on all the objects in a group.

To set multiple attributes across all objects of a group

and handle any errors that may occur:

setting1 = pwr.InfoForSet(attr=pwr.AttrName.CSTATE, value=3)

setting2 = pwr.InfoForSet(attr=pwr.AttrName.PSTATE, value=2)

settingList = [setting1, setting2]

for setError in myPwrGrp.AttrSetValues(settingList):

errorAttribute = setError.attr

errorPwrObj = setError.obj

errorReturnCode = setError.rc

Process error on particular attr for particular object.

184

C.4.5 Metadata Methods

The C API metadata functions (see page 63) are represented in Python API
implementations as class methods to the pwr.Obj object.

Method AttrGetMeta

This method returns a metadata value associated with a pwr.Obj attribute.

attrName = pwr.AttrName.TEMP

metaName = pwr.MetaName.MAX

metaValue = myPwrObj.AttrGetMeta(attrName, metaName)

metaValue = myPwrObj.TEMP.MAX # Shortcut

#

Where:

attrName is the pwr.AttrName attribute to get the meta info for

metaName is the pwr.MetaName meta information to set

Returns:

metaValue: the meta information requested

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

pwr.ReturnCode.NO_ATTRIB

pwr.ReturnCode.NO_META

Method AttrSetMeta

This method writes a metadata value to the pwr.Obj’s attribute’s metadata.

185

attrName = pwr.AttrName.CSTATE

metaName = pwr.MetaName.SAMPLE_RATE

myPwrObj.AttrSetMeta(attrName, metaName, 100)

myPwrObj.CSTATE.SAMPLE_RATE = 100 # Shortcut

#

Where:

attrName is the pwr.AttrName attribute to get the meta info for

metaName is the pwr.MetaName meta information to set

metaValue: the meta information to set

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

pwr.ReturnCode.NO_ATTRIB

pwr.ReturnCode.NO_META

pwr.ReturnCode.READ_ONLY

pwr.ReturnCode.BAD_VALUE

Method GetMetaValueAtIndex

This method returns a two-item tuple with the metadata value and a string
representation of that value.

attrName = pwr.AttrName.CSTATE

metaValue, metaString = myPwrObj.GetMetaValueAtIndex(attrName, 1)

metaValue, metaString = myPwrObj.CSTATE[1] # Shortcut

#

Where:

attrName is a pwr.AttrName type

index is the index of the meta data item

Returns:

metaValue is the meta information requested

metaString is the string version of the meta information

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

pwr.ReturnCode.NO_ATTRIB

pwr.ReturnCode.BAD_INDEX

186

C.4.6 Statistics Methods

Statistics are applied either to Python pwr.Obj or a pwr.Grp objects. Be-
cause of this, the various statistics methods are either encapsulated by the
pwr.Obj or the pwr.Grp classes. See section 5.6 starting on page 69 for C
API documentation on statistics.

Method pwr.Obj.GetStat

Return a named tuple describing the requested historic statistic. Refer to
C.4.4 on page 179 for details of the InfoFromGet() named tuple to access the
information returned. The C API equivalent of this method is documented
in section 5.6 on page 70.

To return a single historic statistic:

attrName = pwr.AttrName.POWER

attrStat = pwr.AttrStat.AVG

endTime = Time(time.time()) #

current time.

timePeriod = timePeriod(start=(endTime-3600.0), end=endTime) # one

hour.

statInfo = myPwrObj.GetStat(attrName, attrStat, timePeriod)

Where:

attrName is a pwr.AttrName attribute name

attrStat is the pwr.AttrStat statistic to gather

timePeriod is the desired time of the statistic

To access the results:

statisticValue = statInfo.value

statisticTimePeriod = statInfo.timestamp

statisticErrorCode = statInfo.rc

#

When a general failure occurs, a pwr.PwrError exception is raised.

The possible exception errors are:

pwr.ReturnCode.FAILURE

pwr.ReturnCode.BAD_VALUE

Method pwr.Grp.GetStats

This method returns a list containing Python named tuples describing his-
toric statistics across the objects of a pwr.Grp. The C API equivalent of this
method is documented in section 5.6 on page 71.

187

To return historic statistics over the objects of a pwr.Grp:

attrName = pwr.AttrName.POWER

attrStat = pwr.AttrStat.AVG

endTime = Time(time.time()) #

current time.

timePeriod = timePeriod(start=(endTime-3600.0), end=endTime) # one

hour.

statList = myPwrGrp.GetStats(attrName, attrStat, timePeriod)

Where:

attrName is a pwr.AttrName attribute name

attrStat is the pwr.AttrStat statistic to gather

timePeriod: is the desired TimePeriod of the statistic, or None

To access the results:

for statInfo in statList:

Access the results:

statisticValue = statInfo.value

statisticPwrObj = statInfo.obj

statisticTimePeriod = statInfo.timestamp

statisticErrorCode = statInfo.rc

Process statistic...

Class Stat

A pwr.Stat instance provides real-time statistics functionality and may be
associated with a pwr.Obj or pwr.Grp object.

Method pwr.Obj.CreateStat

This method creates a pwr.Obj.Stat object:

attrName = pwr.AttrName.POWER

attrStat = pwr.AttrStat.AVG

myPwrStat = myPwrObj.CreateStat(attrName, attrStat)

#

Where:

attrName is the pwr.AttrName attribute to get the statistics for

attrAttrStat is a pwr.AttrStat object

Returns:

myPwrStat : a pwr.Stat object

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

188

Method pwr.Grp.CreateStat

This method creates a pwr.Grp.Stat object.

attrName = pwr.AttrName.TEMP

attrStat = pwr.AttrStat.MAX

myGrpPwrStat = myPwrGrp.CreateStat(attrName, attrStat)

#

Where:

attrName is the pwr.AttrName attribute to get the statistics for

attrAttrStat is a pwr.AttrStat object

Returns:

myGrpPwrStat: a pwr.Stat object

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

Method pwr.Stat.Start

This method starts the collection of real-time statistics on either the pwr.Obj.Stat
or pwr.Grp.Stat object:

myPwrStat.Start() # Start gathering real-time stats

#

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

Method pwr.Stat.Stop

This method stops the collection of real-time statistics on either the pwr.Obj.Stat
or pwr.Grp.Stat object:

myPwrStat.Stop() # Stop gathering real-time stats

#

this method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

189

Method pwr.Stat.Clear

This method resets the collection of real-time statistics on either the pwr.Obj.Stat
or pwr.Grp.Stat object:

myPwrStat.Clear()

#

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

Method pwr.Stat.GetValue

This method returns a named tuple describing the requested real-time statis-
tic. Refer to C.4.4 on page 179 for details of the InfoFromGet() named tuple
to access the information returned. The C API equivalent of this method is
documented in section 5.6 on page 75.

To return a single real-time statistic:

myObjPwrStat = myPwrObj.CreateStat(pwr.AttrName.TEMP, pwr.AttrStat.MAX

)

myObjPwrStat.Start() # Start gathering real-time stats

(Do something useful...)

myObjPwrStat.Stop() # Stop gathering real-time stats

statInfo = myObjPwrStat.GetValue()

To access the results:

statisticValue = statInfo.value

statisticTimePeriod = statInfo.timestamp

statisticErrorCode = statInfo.rc

#

When a general failure occurs, a pwr.PwrError exception is raised.

The possible exception errors are:

pwr.ReturnCode.FAILURE

pwr.ReturnCode.BAD_VALUE

Method pwr.Stat.GetValues

This method returns a list containing Python named tuples describing real-
time statistics across the objects of the pwr.Grp referenced in this pwr.Stat
object. The C API equivalent of this method is documented in section 5.6
on page 76.

190

To return a real-time statistic across the objects of a pwr.Grp:

myGrpPwrStat = myPwrGrp.CreateStat(pwr.AttrName.TEMP, pwr.AttrStat.MAX

)

myGrpPwrStat.Start() # Start gathering real-time stats

(Do something useful...)

myGrpPwrStat.Stop() # Stop gathering real-time stats

Collect the statistics:

statList = myGrpPwrStat.GetValues()

for statInfo in statList:

Access the results:

statisticValue = statInfo.value

statisticPwrObj = statInfo.obj

statisticTimePeriod = statInfo.timestamp

statisticErrorCode = statInfo.rc

Process statistic...

#

When a general failure occurs, a pwr.PwrError exception is raised.

The possible exception errors are:

pwr.ReturnCode.FAILURE

pwr.ReturnCode.BAD_VALUE

Method pwr.Stat.GetReduce

A reduction of a real-time statistic can be retrieved with the pwr.Stat.GetReduce()
method. For a description of the reduction operation refer to the C API de-
scription of PWR_StatGetReduce() on page 77.

Get a reduction of real-time attribute values

reduceOp = pwr.AttrStat.AVG

reduceInfo = myGrpPwrStat.GetReduce(reduceOp)

reduceValue = reduceInfo.value

reduceTimePeriod = reduceInfo.timestamp

reduceErrorCode = reduceInfo.rc

Where:

reduceOp: AttrStat reduction operation to get

Returns:

A named tuple of the attr, value, obj (group), timestamp, and rc

.

This method will raise a PwrError exception when something goes

wrong.

The possible exception errors are:

ReturnCode.FAILURE

191

Method pwr.Grp.GetReduce

A reduction of a historic statistic can be retrieved with the pwr.Grp.GetReduce()
method. For a description of the reduction operation refer to the C API de-
scription of PWR_GrpGetReduce() on page 79.

Get a reduction of historic attribute values

import time

attrName = pwr.AttrName.TEMP

attrStat = pwr.AttrStat.MAX

reduceOp = pwr.AttrStat.AVG

endTime = Time(time.time()) #

current time.

timePeriod = timePeriod(start=(endTime-3600.0), end=endTime) # 1 hour

period

reduceInfo = myPwrGrp.GetReduce(attrName, attrStat, reduceOp,

timePeriod)

reduceValue = reduceInfo.value

reduceTimePeriod = reduceInfo.timestamp

reduceErrorCode = reduceInfo.rc

Where:

attrName: AttrName attribute for which to gather statistics

attrStat: AttrStat historic statistic to gather

reduceOp: AttrStat reduction operation over the objects in the

group.

timePeriod: pwr.TimePeriod period to get statistic.

Returns:

A named tuple of the attr, value, obj (group), timestamp, and rc

.

This method will raise a PwrError exception when something goes

wrong.

The possible exception errors are:

ReturnCode.FAILURE

Method pwr.Stat.Destroy NOT IMPLEMENTED

There is no need for a “Destroy” method due to Python’s garbage collection
implementation.

C.4.7 Version Functions

The top-level Version functions are not associated with any object. They
return an integer detailing a particular segment of the version of the API.

192

There also is an included version variable available to obtain a string version
of the major/minor version number of the API

Method GetMajorVersion

majorVersion = pwr.GetMajorVersion()

majorVersion = pwr.majorVersion # Shortcut

versionStr = pwr.version # Gives "1.2" as example.

#

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

Method GetMinorVersion

minorVersion = pwr.GetMinorVersion()

minorVersion = pwr.minorVersion # Shortcut

#

These methods raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

C.4.8 Big List of Attributes

The list of attributes for the default context is the same as the C API section
5.8 starting on page 83, with the attributes enumerated as defined in C.3.5
on page 160.

C.4.9 Big List of Metadata

The list of metadata names for the default context is the same as in the C
API section 5.9 on page 86, with the attributes enumerated as defined in
C.3.6 on page 162.

C.5 High Level (Common) Methods

193

C.5.1 Report Methods

Method pwr.Cntxt.GetReportByID

Please see the C API specification (section 6.1 on page 90) for a verbose de-
scription of the GetReportByID() method. Also, please see C.3.9 on page 167
and/or vendor implementation specific documentation for valid IDs. To col-
lect statistics for an idStr and idType combination, the GetReportByID()

method may be used.

statValue, timePeriod = myPwrCntxt.GetReportByID(idStr, idType,

attrName,

pwrAttrStat,

pwrTimePeriod)

#

Where:

idstr is a string ID for the report to be generated.

idType is a pwr.ID type used to interpret the idstr ID

attrName is a pwr.AttrName type

pwrAttrStat is a pwr.AttrStat object

pwrTimePeriod is a pwr.TimePeriod object

Returns:

statValue is the requested statistic

timePeriod is the pwr.TimePeriod of the statistic

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

pwr.ReturnCode.NOT_IMPLEMENTED

#

C.6 Interfaces

In general, this section defines various combinations of default attributes and
the roles/interfaces that use them. Mostly, this information directly maps to
the definitions in the C API specification. However, there are some methods
described in this section that are discussed because of the differences between
their C and Python implementations.

194

C.6.1 Operating System, Hardware Interface

These methods are related to pwr.Obj objects of type pwr.ObjType.NODE,
so they are encapsulated in the pwr.Obj class.

Method StateTransitDelay

This method returns the transition delay (pwr.Time) given the callers start-
State and endState input parameters. See section C.3.10 on page 167 for
details on the pwr.OperState class):

startState = myPwrObj.GetPerfState()

startState = myPwrObj.perfstate # Shortcut

endState = pwr.OperState(pwr.SleepState.SHALLOW, pwr.PerfState.FASTEST

)

latencyPowerTime = myPwrObj.StateTransitDelay(startState, endState)

#

Where:

startState is a pwr.OperState state

endState is a pwr.OperState state

Returns:

latencyPowerTime is the pwr.Time latency

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

Note that the example above uses the method GetPerfState documented
on page 198.

C.6.2 Monitor and Control, Hardware Interface

(No new methods described here)

C.6.3 Application, Operating System Interface

Method AppTuningHint

This method supplies power hints to a power object, using the hints enumer-
ated by the pwr.RegionHint and pwr.RegionIntensity enumerations.

195

pwrRegionHint = pwr.RegionHint.MEM_BOUND # see enum RegionHint

pwrRegionIntensity = pwr.RegionIntensity.LOW # see enum

RegionIntensity

myPwrObj.AppTuningHint(pwrRegionHint, pwrRegionIntensity)

#

Where:

pwrRegionHint is a pwr.RegionHint type

pwrRegionIntensity is a pwr.RegionIntensity level

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

pwr.ReturnCode.NOT_IMPLEMENTED

Method SetSleepStateLimit

This method sets the sleep-state limit from the enumeration for a power
object.

pwrSleepState = pwr.SleepState.NO # see enum SleepState

myPwrObj.SetSleepStateLimit(pwrSleepState)

myPwrObj.sleepstate = pwrSleepState # Shortcut

#

Where:

pwrSleepState is a pwr.SleepState type

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

pwr.ReturnCode.NOT_IMPLEMENTED

Method WakeUpLatency

This method gets the wake up latency for the sleep-state (DEEPEST in this
example) to transition from, returning the (pwr.Time) latency of the transi-
tion.

196

latencyPwrTime = myPwrObj.WakeUpLatency(pwr.SleepState.DEEPEST)

#

Where:

pwrSleepState is a pwr.SleepState type

Returns:

latencyPwrTime a pwr.Time object representing the latency time

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

pwr.ReturnCode.NOT_IMPLEMENTED

Method RecommendSleepState

This method recommends a sleep-state for a power object, returning the
deepest sleep-state (pwr.SleepState) to be used as a limit.

pwrSleepState = myPwrObj.RecommendSleepState(latencyPwrTime)

#

Where:

latencyPwrTime is a pwr.Time latency value

Returns:

pwrSleepState is a pwr.SleepState recommendation type

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

pwr.ReturnCode.NOT_IMPLEMENTED

Method SetPerfState

This method requests that a power object performance level be set to a
desired (FASTEST in this example) pwr.PerfState level.

197

myPwrObj.SetPerfState(pwr.PerfState.FASTEST)

myPwrObj.perfstate = pwr.PerfState.FASTEST # Shortcut

#

Where:

pwrPerfState is the requested pwr.PerfState type

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

pwr.ReturnCode.NOT_IMPLEMENTED

Method GetPerfState

This method retrieves the performance level of a power object, returning the
current performance state, pwr.PerfState object.

pwrPerfState = myPwrObj.GetPerfState()

pwrPerfState = myPwrObj.perfstate # Shortcut

#

Returns:

pwrPerfState is the returned pwr.PerfState type

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

pwr.ReturnCode.NOT_IMPLEMENTED

Method GetSleepState

Similarly for retrieving the sleep-state of a power object, the GetSleepState

method may be used.

pwrSleepState = myPwrObj.GetSleepState()

pwrSleepState = myPwrObj.sleepstate # Shortcut

#

Returns:

pwrSleepState is the returned pwr.SleepState type

This method raises a pwr.PwrError exception when something goes

wrong.

The possible exception errors are:

pwr.ReturnCode.FAILURE

pwr.ReturnCode.NOT_IMPLEMENTED

198

C.6.4 User, Resource Manager Interface

(No new methods described here)

C.6.5 Resource Manager, Operating System Interface

(No new methods described here)

C.6.6 Resource Manager, Monitor and Control Inter-
face

(No new methods described here)

C.6.7 Administrator, Monitor and Control Interface

(No new methods described here)

C.6.8 HPCS Manager, Resource Manager Interface

(No new methods described here)

C.6.9 Accounting, Monitor and Control Interface

(No new methods described here)

C.6.10 User Monitor and Control Interface

(No new methods described here)

C.7 Conclusion

This concludes the Python-specific appendix to the Power API specification.

199

Chapter 9

Index

200

Index

PWR_AppHintCreate (function), 105
PWR_AppHintDestroy (function), 107
PWR_AppHintProgress (function), 109
PWR_AppHintStart (function), 108
PWR_AppHintStop (function), 108
PWR_ATTR_CSTATEDESC(attribute), 83, 95, 100, 115,

119, 121, 125, 128
PWR_ATTR_CSTATELIMITDESC(attribute), 84, 95, 100,

116, 119, 121, 125
PWR_ATTR_CURRENTDESC(attribute), 84, 95, 100, 122,

126, 129
PWR_ATTR_ENERGYDESC(attribute), 85, 96, 101, 104,

117, 120, 123, 127, 130
PWR_ATTR_FREQDESC(attribute), 84, 95, 100, 104, 116,

119, 122, 126, 129
PWR_ATTR_FREQLIMITMAXDESC(attribute), 85, 96, 101,

104, 116, 119, 122, 126, 129
PWR_ATTR_FREQLIMITMINDESC(attribute), 84, 96, 101,

104, 116, 119, 122, 126, 129
PWR_ATTR_GOVDESC(attribute), 86, 97, 105
PWR_ATTR_MAXPOWERDESC(attribute), 84, 95, 100, 104,

116, 119, 122, 126, 129
PWR_ATTR_MINPOWERDESC(attribute), 84, 95, 100, 103,

116, 119, 122, 126, 129
PWR_ATTR_OSIDDESC(attribute), 85, 97, 105
PWR_ATTR_POWERDESC(attribute), 84, 95, 100, 103, 116,

119, 122, 126, 129
PWR_ATTR_PSTATEDESC(attribute), 83, 94, 99, 115, 118,

121, 125, 128
PWR_ATTR_SSTATEDESC(attribute), 84, 95, 100, 116,

119, 121, 126, 129
PWR_ATTR_TEMPDESC(attribute), 85, 96, 101, 104, 117,

120, 123, 127, 130
PWR_ATTR_THROTTLEDCOUNTIDDESC(attribute), 86, 96
PWR_ATTR_THROTTLEDIDDESC(attribute), 85, 96
PWR_ATTR_VOLTAGEDESC(attribute), 84, 95, 100, 122,

126, 129

PWR_Cntxt (typedef), 20
PWR_CNTXT_DEFAULT (#define), 22
PWR_CNTXT_VENDOR (#define), 22
PWR_CntxtDestroy (function), 35
PWR_CntxtGetEntryPoint (function), 36
PWR_CntxtGetGrpByName (function), 48
PWR_CntxtGetObjByName (function), 40
PWR_CntxtInit (function), 34

PWR_CntxtType (typedef), 22

PWR_GetMajorVersion (function), 82
PWR_GetMinorVersion (function), 83
PWR_GetPerfState (function), 113
PWR_GetReportByID (function), 90
PWR_GetSleepState (function), 113
PWR_Grp (typedef), 20
PWR_GrpAddObj (function), 42
PWR_GrpAttrGetValue (function), 57
PWR_GrpAttrGetValues (function), 60
PWR_GrpAttrSetValue (function), 59
PWR_GrpAttrSetValues (function), 62
PWR_GrpCreate (function), 41
PWR_GrpCreateStat (function), 73
PWR_GrpDestroy (function), 42
PWR_GrpDifference (function), 46
PWR_GrpDuplicate (function), 44
PWR_GrpGetNumObjs (function), 43
PWR_GrpGetObjByIndx (function), 43
PWR_GrpGetReduce (function), 79
PWR_GrpGetStats (function), 71
PWR_GrpIntersection (function), 45
PWR_GrpRemoveObj (function), 42
PWR_GrpSymDifference (function), 47
PWR_GrpUnion (function), 45

PWR_MAJOR_VERSION (#define), 20
PWR_MAX_STRING_LEN (#define), 20
PWR_MD_DESC(metadata), 88
PWR_MD_DESC_LEN(metadata), 88
PWR_MD_MAX(metadata), 86
PWR_MD_MAX_LEN(metadata), 87
PWR_MD_MEASURE_METHOD(metadata), 89
PWR_MD_MIN(metadata), 86
PWR_MD_NAME(metadata), 88
PWR_MD_NAME_LEN(metadata), 88
PWR_MD_NUM(metadata), 86
PWR_MD_PRECISION(metadata), 86
PWR_MD_SAMPLE_RATE(metadata), 87
PWR_MD_TIME_WINDOW(metadata), 87
PWR_MD_TS_ACCURACY(metadata), 87
PWR_MD_TS_LATENCY(metadata), 87
PWR_MD_UPDATE_RATE(metadata), 87
PWR_MD_VALUE_LEN(metadata), 88
PWR_MD_VENDOR_INFO(metadata), 89

201

PWR_MD_VENDOR_INFO_LEN(metadata), 89
PWR_MetaValueAtIndex (function), 66
PWR_MINOR_VERSION (#define), 20

PWR_Obj (typedef), 20
PWR_ObjAttrGetMeta (function), 64
PWR_ObjAttrGetValue (function), 50
PWR_ObjAttrGetValues (function), 54
PWR_ObjAttrIsValid (function), 57
PWR_ObjAttrSetMeta (function), 65
PWR_ObjAttrSetValue (function), 50
PWR_ObjAttrSetValues (function), 56
PWR_ObjCreateStat (function), 72
PWR_ObjGetChildren (function), 39
PWR_ObjGetName (function), 37
PWR_ObjGetParent (function), 38
PWR_ObjGetSizeOfName (function), 38
PWR_ObjGetStat (function), 70
PWR_ObjGetType (function), 36

PWR_RecommendSleepState (function), 111

PWR_SetPerfState (function), 112
PWR_SetSleepStateLimit (function), 110
PWR_Stat (typedef), 20
PWR_StatClear (function), 75
PWR_StatDestroy (function), 82
PWR_StateTransitDelay (function), 97
PWR_StatGetReduce (function), 77
PWR_StatGetValue (function), 75
PWR_StatGetValues (function), 76
PWR_StatStart (function), 74
PWR_StatStop (function), 74
PWR_Status (typedef), 20
PWR_StatusClear (function), 53
PWR_StatusCreate (function), 51
PWR_StatusDestroy (function), 52
PWR_StatusPopError (function), 52

PWR_WakeUpLatency (function), 110

202

	Acknowledgment
	Introduction
	Background
	Motivation
	Use Case Development
	Security Model

	Theory of Operation
	Overview
	Power API Initialization
	Roles
	System Description
	Attributes
	Metadata
	Thread Safety

	Type Definitions
	Opaque Types
	Globally Relevant Definitions
	Context Relevant Type Definitions
	Object Relevant Type Definitions
	Attribute Relevant Type Definitions
	Metadata Relevant Type Definitions
	Error Return Definitions
	Time Related Definitions
	Statistics Relevant Type Definitions
	OS Hardware Interface Type Definitions
	Application OS Interface Type Definitions

	Core (Common) Interface Functions
	Initialization
	Hierarchy Navigation Functions
	Group Functions
	Attribute Functions
	Metadata Functions
	Statistics Functions
	Version Functions
	Big List of Attributes
	Big List of Metadata

	High-Level (Common) Functions
	Report Functions

	Role/System Interfaces
	Operating System, Hardware Interface
	Supported Attributes
	Supported Core (Common) Functions
	Supported High-Level (Common) Functions
	Interface Specific Functions

	Monitor and Control, Hardware Interface
	Supported Attributes
	Supported Core (Common) Functions
	Supported High-Level (Common) Functions
	Interface Specific Functions

	Application, Operating System Interface
	Supported Attributes
	Supported Core (Common) Functions
	Supported High-Level (Common) Functions

	User, Resource Manager Interface
	Supported Attributes
	Supported Core (Common) Functions
	Supported High-Level (Common) Functions
	Interface Specific Functions

	Resource Manager, Operating System Interface
	Supported Attributes
	Supported Core (Common) Functions
	Supported High-Level (Common) Functions
	Interface Specific Functions

	Resource Manager, Monitor and Control Interface
	Supported Attributes
	Supported Core (Common) Functions
	Supported High-Level (Common) Functions
	Interface Specific Functions

	Administrator, Monitor and Control Interface
	Supported Attributes
	Supported Core (Common) Functions
	Supported High-Level (Common) Functions
	Interface Specific Functions

	HPCS Manager, Resource Manager Interface
	Supported Attributes
	Supported Core (Common) Functions
	Supported High-Level (Common) Functions
	Interface Specific Functions

	Accounting, Monitor and Control Interface
	Supported Attributes
	Supported Core (Common) Functions
	Supported High-Level (Common) Functions
	Interface Specific Functions

	User, Monitor and Control Interface
	Supported Attributes
	Supported Core (Common) Functions
	Supported High-Level (Common) Functions
	Interface Specific Functions

	Conclusion
	References
	Appendices
	Topics Under Consideration for Future Versions
	Change Log
	Alternative Programming Language Bindings: Python
	Introduction
	Theory Of Operation
	Overview
	Power API Initialization
	Roles
	System Description
	Attributes
	Metadata
	Thread Safety

	Type Definitions
	Opaque Types
	Globally Relevant Definitions
	Context Relevant Type Definitions
	Object Relevant Type Definitions
	Attribute Relevant Type Definitions
	Metadata Relevant Type Definitions
	Error Return Definitions
	Time Related Definitions
	Statistics Relevant Type Definitions
	OS Hardware Type Definitions
	Application OS Interface Type Definitions

	Core (Common) Interface Methods
	Initialization
	Hierarchy Navigation Methods
	Group Methods
	Attribute Methods
	Metadata Methods
	Statistics Methods
	Version Functions
	Big List of Attributes
	Big List of Metadata

	High Level (Common) Methods
	Report Methods

	Interfaces
	Operating System, Hardware Interface
	Monitor and Control, Hardware Interface
	Application, Operating System Interface
	User, Resource Manager Interface
	Resource Manager, Operating System Interface
	Resource Manager, Monitor and Control Interface
	Administrator, Monitor and Control Interface
	HPCS Manager, Resource Manager Interface
	Accounting, Monitor and Control Interface
	User Monitor and Control Interface

	Conclusion

	Index

